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Abstract

Using UK consumer price microdata, we report that aggregate price flex-
ibility varies substantially over time and induces significant non-linearity
in inflation. In a regime of high flexibility, the half-life of inflation drops
by 50% and its volatility rises considerably. Such asymmetry arises natu-
rally from state-dependent pricing, for which we find ample evidence in
the data, particularly following the Great Recession. Neglecting this prop-
erty may lead to a systematic underprediction of inflation, as seen in the
post-Pandemic inflation surge. Tracking real-time movements in price flex-
ibility is crucial for assessing inflation dynamics and to inform monetary
policy decisions.

*This paper is a deeply revised version of “Time-varying Price Flexibility and Inflation Dy-
namics” of which Lasse de la Porte Simonsen was a co-author. We wish to thank Lasse for his
input during the initial stage of this project. We also thank for comments Yoosoon Chang, An-
drea Colciago, Luca Dedola, Federico Di Pace, Etienne Gagnon, Ana Galvao, Francesco Lippi,
Ricardo Nunes, Chiara Osbat, Roberto Pancrazi, Giorgio Primiceri, Omar Rachedi, Federico
Ravenna, Søren Hove Ravn, Joseph Vavra and Fabrizio Venditti.

†Collegio Carlo Aberto, University of Turin (ESOMAS), University of Warwick and CEPR.
Address: Piazza Vincenzo Arbarello, 8, 10122 Turin, Italy. E-mail: ivan.petrella@carloalberto.org.

‡Department of Economics and Finance, Catholic University of Milan. Address: Via Necchi
5, 20123 Milan, Italy. E-mail: emiliano.santoro@unicatt.it.

§Department of Economics, University of Tübingen. Address: Mohlstraße 36, Room 410.
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1 Introduction

Over the past decade, the growing availability of disaggregated consumer
price data has allowed economists to closely analyze price-setting behavior, as-
sess the empirical validity of various price-adjustment theories, and derive var-
ious measures of aggregate price flexibility. The latter, broadly understood as
the response of the aggregate price level to macroeconomic shocks, is central to
the transmission of monetary policy, and ultimately shapes the trade-off Cen-
tral Banks face between stabilizing output and inflation. While numerous stud-
ies have explored the degree of price sluggishness and its underlying drivers,
less emphasis has been placed on how aggregate price flexibility evolves over
time. In particular, the literature has largely overlooked how, and to what ex-
tent, time-varying price flexibility affects inflation dynamics and the ability of
inflation-targeting Central Banks to meet their targets. We address this gap, and
show that tracking changes in price flexibility is key in improving inflation pro-
jections, deepening our understanding of inflation dynamics, and enhancing
the effectiveness of monetary policy.

Using monthly price microdata underlying the UK Consumer Price Index
(CPI) from 1996 to 2024, we estimate the generalized Ss model developed by
Caballero and Engel (2007). Along with encompassing different price-setting
protocols, this model is well suited to examine time variation and comovement
among various price-setting statistics. Estimation involves fitting both the dis-
tribution of price gaps (i.e., the wedge between actual and optimal reset prices)
and the adjustment hazard (i.e., the probability of a good’s price changing as
a function of its price gap). We exploit our time-varying estimates of the Ss
model to establish a connection between inflation and the underlying process
of price setting. To this end, we back out predetermined price adjustments—
the so-called intensive margin—and adjustments triggered or canceled by the
shock—the extensive margin.1 While the intensive margin was typically the pri-
mary driver of price flexibility up until the Great Recession, state dependence

1Adjustments occurring over the intensive margin characterize both time- and state-
dependent models. The extensive margin, instead, is a defining feature of state-dependent
models.
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in price setting—reflected in the extensive margin—becomes largely dominant
thereafter, so that larger price adjustments become more likely to be enacted.
Such development induces considerable volatility in inflation dynamics and ap-
pears quite important, particularly at the onset of the Great Recession and of the
post-Pandemic period, both episodes being characterized by spikes in inflation
volatility.

Aggregate price flexibility varies significantly over time, peaking during
2008-2011—more than 50% higher than the pre-recession level—before halving
by 2016 and then climbing steadily to its latest peak after 2020. Concurrently,
inflation has fluctuated sharply since the onset of the Great Recession, being
almost twice as volatile, even excluding the post-Pandemic sample. We high-
light that changes in price flexibility shape inflation dynamics, so that similar
inflationary shocks—such as exchange rate fluctuations and commodity price
changes—may lead to very different inflation outcomes depending on the price-
flexibility regime in place. Failure to recognize such state dependence may help
explain why the Bank of England has frequently struggled to meet its 2% infla-
tion target in the last two decades.

We establish that regime shifts in price flexibility are key to understand in-
flation dynamics. The half-life of inflation is 50% higher during periods of rela-
tively low flexibility. Otherwise, inflation tends to be more volatile, less persis-
tent, and is typically higher when price flexibility is relatively high. We show
that both Bank of England and broader market participants fail to account for
such state dependence when projecting future inflation. Inflation forecasts are
generally unbiased when aggregate price flexibility is low or average, yet a sig-
nificant negative bias emerges during periods of high price flexibility, even ex-
cluding the post-Pandemic sample. This bias is not only statistically significant,
but also economically important. We conduct a counterfactual experiment in
which the Bank of England’s forecasts from the last quarter of 2020 are adjusted
for the high-flexibility bias. Our findings indicate that the return of inflation
to target should have been reassessed, offering a cautionary perspective on the
transitory nature inflation deviations from target, even in the early stages of the
post-Pandemic inflation surge.

Our work has important implications for monetary authorities aiming to
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stabilize inflation. We show that in periods of relatively low price flexibility,
inflationary shocks are likely to dissipate slowly, while the same shock would
result in a larger inflation response—but also revert more quickly—under high
price flexibility. A failure to recognize that can help explain why the Bank of
England, along with other Central Banks, was caught off guard by the rapid
inflation surge following COVID-19, and equally surprised by the swift decline
beginning in the second half of 2023. Such state dependence is likely to influ-
ence the trade-off Central Banks face between stabilizing output and inflation.
While this insight naturally emerges in state-dependent models of price setting,
it is only minimally incorporated into Central Bank practices and communica-
tions.

We find significant non-linearities in inflation dynamics, even during a pe-
riod of relative stability—apart from the post-Pandemic inflation surge. These
non-linearities are likely to become even more pronounced in a more uncer-
tain macroeconomic environment, particularly if the era of the Great Modera-
tion gives way to a period of heightened inflation volatility, driven by adverse
supply-side developments—deglobalization, reshoring, lengthening of the sup-
ply chains etc.—that place greater strain on Central Banks’ policy trade-offs. In
such conditions, inflation risk becomes more difficult to manage, as both the
persistence and magnitude of inflation fluctuations grow increasingly unpre-
dictable. Accurately characterizing these elements is therefore essential, as it
provides a key input for assessing inflation risk and guiding the central bank’s
ability to navigate an increasingly complex policy landscape.

Related literature Our work relates to numerous studies examining the link
between micro price changes and aggregate inflation.2 Closest to our analysis
is Berger and Vavra (2018), who document time variation in price flexibility.
Karadi and Reiff (2019) and Cavallo et al. (2024) emphasize how large shocks
significantly alter price flexibility, affecting aggregate inflation (see also Ascari
and Haber, 2022). Relatedly, Karadi et al. (2024) and Ghassibe and Nakov (2025)

2See, among others, Bils and Klenow (2004), Alvarez et al. (2006), Klenow and Kryvtsov
(2008), Nakamura and Steinsson (2008), Gagnon (2009), Costain and Nakov (2011), Midrigan
(2011), Alvarez and Lippi (2014), Berardi et al. (2015), Nakamura et al. (2018), Carvalho and
Kryvtsov (2021) and Gautier et al. (2024).
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show that price flexibility depends on the type of shocks. Thus, time-varying
price flexibility may reflect shifts in the size and composition of shocks hitting
the economy. Regardless of its drivers, our key contribution is to demonstrate
that incorporating time variation in price flexibility improves our understand-
ing of inflation dynamics. We show that inflation is less persistent and more
volatile when price flexibility is relatively high, and failing to account for this
leads to systematic prediction biases. In line with Chu et al. (2018), who in-
vestigate the predictive power contained in the distribution of price changes,
we demonstrate that price flexibility—capturing key information in micro price
data—provides valuable insights for inflation projections.

Our study also builds on research that models the relationship between
the distribution of price changes and price flexibility (see, e.g., Alvarez et al.,
2016, Midrigan, 2011, Vavra, 2014). These models typically assume specific
shocks to price-setting units, whereas our approach remains agnostic, avoiding
strong assumptions about price adjustment mechanisms ex ante. Our estimates
of the time-varying hazard function reveal both (i) a nonzero probability of price
adjustment—even for minimal deviations from optimal prices—consistent with
time-dependent pricing, and (ii) U-shaped hazard functions— consistent with
state-dependent pricing.3

We further contribute to empirical work using UK consumer price micro-
data. Bunn and Ellis (2012) were among the first to examine price-setting fre-
quency and hazard functions using data from the Office for National Statistics
(ONS), while Dixon et al. (2020) focus on the Great Recession’s impact on pric-
ing (see also Dixon and Tian, 2017). These studies attribute little importance to
endogenous macroeconomic effects on pricing, while our evidence points to a
certain prominence of state dependence in price setting, and more so in the sam-
ple that is not accounted for in their analysis, during which the extensive mar-
gin of price adjustment overcomes the intensive one in the contribution to price
flexibility. In fact, the novelty of the approach rests on tracking time changes
in both margins of adjustment, rather than focusing on their average relative

3Evidence supporting the coexistence of time and state dependence is extensive; see, e.g.,
Nakamura and Steinsson (2010b), as well as Lein (2010), Carlsson and Skans (2012), and Dixon
and Grimme (2022) using firm level data.

5



importance.

Structure The rest of the paper is organized as follows. Section 2 discusses
the data and provides some motivating preliminary analysis. Section 3 reviews
the generalized Ss model and takes it to the data. Section 4 examines time
variation in price flexibility, as well as the relative importance of adjustments
along the intensive and the extensive margin over time. Section 5 discusses the
implications of state dependence in price flexibility for inflation dynamics and
forecasting. Section 6 concludes.

2 Microdata on consumer prices

We use ONS microdata underpinning the UK CPI for the period from 1996:M2
to 2024:M8. Prices are collected on a monthly basis for more than 700 categories
of goods and services, and are published with a one-month lag. The data ex-
clude centrally collected price quotes. On our end, we discard price quotes that
have not been validated by the system or accepted by the ONS, as a prelimi-
nary step. The overall number of price quotes accounts for approximately 60%
of those included in the CPI.

Each price quote is classified by region, location, outlet, and item. Due to
a confidentiality agreement between the ONS and individual shops, only the
region, outlet, and item classifications are published. As a result, some price
quotes may not be uniquely identified. This typically occurs when the ONS
samples the same item in multiple locations within the same region for out-
lets that are part of a chain. To ensure that price trajectories can be uniquely
identified, we use ‘base prices’, defined as the January price for each item un-
der consideration.4 Even after conditioning on base prices, a small portion of
price trajectories (about 0.6% on average) remain non-uniquely identified, and
we opt to discard them.5 Individual price quotes are weighted according to the

4Base prices are typically used to normalize price quotes, calculate price indices, and adjust
for changes in the quality and/or quantity of a given good.

5Due to particularly low coverage, Housing and Housing Services (COICOP 4) and Edu-
cation (COICOP 10) are also excluded from the sample. Additionally, price changes exceed-
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ONS stratification weights (see Chapter 7 of the ONS CPI Manual, ONS, 2019).
A provides further details on the dataset’s construction.

After processing price quotes as described above, it is crucial to distinguish
between regular and temporary price changes, such as sales, which behave in a
significantly different manner, relative to regular prices (see Eichenbaum et al.,
2011, Kehoe and Midrigan, 2015). Sales are a common tool for temporary price
cuts. Kryvtsov and Vincent (2021) document their countercyclicality, showing
that firms use sales to respond to temporary negative shocks. Consequently,
excluding sales removes large price drops at the onset of a downturn and the
subsequent sharp increases when the economy recovers. However, sales of-
ten reflect marketing strategies rather than fundamental price-setting behavior.
Guimaraes and Sheedy (2011) highlight that even when firms can freely adjust
prices, sales act as strategic substitutes—firms discount less when competitors
already do. As a result, sales do not necessarily translate into meaningful aggre-
gate price flexibility, and monetary policy continues to exert strong real effects.
Such disconnect suggests that including sales may overstate the economy’s ac-
tual responsiveness to shocks. By focusing on regular prices, we aim to capture
the persistent component of price setting that drives inflation dynamics.

To this end, we first exclude all price quotes marked with a sales indicator
by the ONS.6 As a second step, we apply a symmetric V-shaped filter, as de-
fined by Nakamura and Steinsson (2010b), to detect implicit sales. According
to this filter, the sale price of item i at time t, P s

i,t, is identified as follows: (i) it is
lower than the previous period’s price (i.e., P s

i,t < Pi,t−1), and (ii) the price in the
following period reverts to the previous price (i.e., Pi,t+1 = Pi,t−1). A recovery
price P r

i,t is instead identified by the following criteria: (i) it is higher than the
previous period’s price (i.e., P r

i,t > Pi,t−1) and (ii) it equals the price two periods
earlier (i.e., P r

i,t = Pi,t−2). Once a price quote is identified as a sale or recovery
price, we discard it from the sample.7

ing 300%, which are likely due to measurement errors, are removed. These occur very rarely
(< 0.02%).

6For a price to be classified as part of a sale, the ONS requires that the discount be available
to all potential customers—excluding quantity discounts and membership deals—and that it
represents only a temporary or end-of-season price reduction. This definition excludes clear-
ance sales of products that have reached the end of their life cycle.

7See also Nakamura and Steinsson (2008) and Vavra (2014). An alternative approach, em-
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Item substitutions present another challenge when identifying price trajec-
tories, as they introduce ambiguity in determining whether a price change re-
flects a quality adjustment or a pure price change. Product substitutions occur
when an item in the sample is discontinued at an outlet, and the ONS selects
a replacement item to continue tracking prices. Consequently, price changes
following product turnovers may either reflect uncaptured quality differences
(Bils, 2009) or simply represent an opportunity to reset prices, independent of
the underlying sources of price rigidity, as argued by Nakamura and Steinsson
(2008). In line with previous studies, we terminate a price trajectory whenever
it encounters a substitution flag (see, e.g., Berardi et al., 2015, Berger and Vavra,
2018, Kryvtsov and Vincent, 2021).

After these steps, we define the price change of item i at time t as ∆pi,t =

log (Pi,t/Pi,t−1).8

2.1 Stylized facts

This section presents some key facts about the behavior of the ONS micro-
data, and their implications for inflation dynamics. Aggregate inflation may
rise as a result of larger average price increases or because of more frequent
price changes at the micro level. Specifically, inflation can be written as the
product of the frequency of adjustment (frt)—defined as the share of prices
being adjusted in every month—and the average price change in every month
(∆pt)—for those goods and services changing prices in any given month:

πt = frt ×∆pt. (1)

The frequency is computed as
∑

i ωi,t1{∆pi,t ̸=0}, with ωi,t denoting the CPI weight
associated with good i at time t, and 1{∆pi,t ̸=0} = 1 if ∆pi,t ̸= 0, and zero other-
wise. The average price, instead, is computed as fr−1

t

∑
i ωi,t1{∆pi,t ̸=0}∆pi,t.

ployed by Klenow and Kryvtsov (2008), replaces sale prices with the last regular price until a
new regular price is observed. Our results are robust to this approach.

8We also compute price changes as ∆pi,t = 2
Pi,t−Pi,t−1

Pi,t+Pi,t−1
. This alternative measure is

bounded and less sensitive to outliers. The results using this alternative measure of price change
remain virtually unchanged from those we report.
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As month-on-month (MoM) inflation variations exhibit pronounced season-
ality and significant high-frequency noise, it is customary—including in Central
Bank communication—to focus on year-on-year (YoY) inflation, i.e. a 12-month
moving average of annualized MoM inflation. While this approach helps mit-
igate seasonality and noise in the data, the backward-looking moving average
(MA) filter introduces a phase shift in inflation dynamics, causing a slight delay
in the observed peaks and troughs (see, e.g., Harvey, 1993, p.189-198). To en-
hance comparability with YoY inflation, we apply the same filter to all statistics
derived from microdata, as they also exhibit substantial high-frequency varia-
tion and seasonality.

The top panels of Figure 1 report f̃ rt and ∆̃pt, respectively (for a generic
variable κt, κ̃t = 1

12

∑11
j=0 κt−j represents its 12-month moving-average transfor-

mation). As expected, the average price change tracks CPI inflation closely. The
frequency of adjustment also exhibits notable fluctuations, including a tempo-
rary increase during and immediately after the Great Recession (consistent with
the findings of Dixon et al., 2020), followed by a downward trend starting with
the inflation decline in 2012. During this period, it dropped well below its previ-
ous sample average before undergoing a significant reversal after the COVID-19
Pandemic.9 The frequency of price adjustments increased significantly during
the most recent inflationary episode. However, even at its peak, only about 14%
of prices were adjusted each month, despite inflation exceeding 10%. This rate
is considerably lower than what was documented during high-inflation periods
in the US (see Nakamura et al., 2018). In fact, despite exceptional inflationary
pressures, the recent surge in the frequency of price adjustment in the UK re-
mains lower than during the Great Recession, when inflation was well below
the level observed in the most recent years.

The way inflation rises—whether through larger price increases or more fre-
quent price adjustments—has important implications for inflation dynamics.

9The average frequency of price adjustment prior to its drop is slightly lower than the es-
timates reported by previous studies on UK price microdata conducted over roughly the same
time span. This reflects the fact that we exclude from our sample both sales and utility prices
(COICOP 4), the latter being a particularly volatile component of the CPI index. Specifically,
Bunn and Ellis (2012) include utility prices and sales, while Dixon and Tian (2017) and Dixon
et al. (2020) include sales.
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Figure 1: FREQUENCY, AVERAGE PRICE CHANGES, AND DISPERSION
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Notes: The frequency of price adjustment, frt , measures the share of prices being adjusted in
every month, and is computed as

∑
i ωi,t1{∆pi,t ̸=0}, where ωi,t denotes the CPI weight associ-

ated to good i at time t, and 1{∆pi,t ̸=0} = 1 if ∆pi,t ̸= 0 and zero otherwise. The average price,
instead, is denoted by ∆pt and is computed as fr−1

t

∑
i ωi,t1{∆pi,t ̸=0}∆pi,t. All series are re-

ported in percentage terms. In the bottom-left panel of the figure we decompose the deviation
of inflation from its sample average between the contribution of the variation in the average
price change (holding the frequency fixed) and that of the variation in the frequency of adjust-
ment (holding the average price change fixed). Specifically, since πt = frt∆pt, one can take the
following decomposition: πY oY

t −πY oY = fr(∆̃pt–∆p)+∆p(f̃ rt−fr)+(∆̃pt−∆p)(f̃ rt−fr).
The inflation rate graphed in the upper panels of the figure is the official CPI inflation rate pub-
lished by the ONS. The shaded vertical bands denote the duration of recessionary episodes.

For instance, when firms respond to large nominal cost shocks by adjusting
prices more frequently, inflation initially rises more sharply but subsides more
quickly than if the frequency had remained unchanged. Taking a first-order
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approximation of Equation (1), and expressing it in terms of YoY inflation, we
obtain

πY oYt − πY oY ≈ fr(∆̃p
A

t –∆p
A
) + ∆p

A
(f̃ rt − fr), (2)

where ∆pAt ≡ 12∆pt represents the annualized average price change, and the
bar denotes sample averages. Therefore, the first term on the right side of the
equation reflects the contribution to inflation of variation in the average price
change, while the second term captures the contribution of changes in the fre-
quency of adjustment.10 Notably, only about half of inflation variability is ex-
plained by the average price change, the remaining part being accounted for
by changes in the frequency (either directly or indirectly, through its positive
comovement with the average price change). A relatively large contribution of
the frequency is particularly evident in the post-Great Recession sample. The
post-Pandemic inflation surge is, instead, attributed mostly to the average price-
change component.11 However, changes in the frequency of price adjustment,
coupled with the higher order term, still account for approximately one-third of
inflation at the peak.

The bottom-right panel of the figure plots different measures of dispersion
of the distribution of (non-zero) price changes. Both the interquantile and the
interdecile range display a large increase in the aftermath of the Great Reces-
sion, to then skyrocket and abruptly decline in coincidence with the onset and
the attenuation of the COVID-19 emergency, respectively.12 A key observation
from the graphical analysis is that the dispersion of price changes and the fre-
quency of adjustment tend to move in opposite directions. For example, in
the first decade of the sample, the average frequency of price adjustment is
roughly 50% higher, whereas the average interquartile range of price changes
is twice as large in the last decade, as compared with the first one. Similarly,

10Higher-order terms account for variation in inflation due to the covariation between the
frequency of price adjustment and the average price change. A detailed derivation of this de-
composition is available in B.

11This is in line with evidence of Montag and Villar (2022) for the US and Dedola et al. (2024)
for the Euro Area.

12Also the standard deviation displays a similar pattern. However, this measure is often in-
fluenced by outliers. This type of problem does not plague the interquantile and the interdecile
range.
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in the post-COVID-19 period, the peak in the dispersion of price changes oc-
curred alongside a very low frequency of adjustment, just before the inflation
surge in the second half of 2021. Conversely, the peak in the frequency of price
adjustment in late 2022 coincided with a very low level of dispersion in price
changes. These opposite movements suggest major shifts between a regime of
relatively small—yet, frequent—price changes, and one of much larger—yet,
more infrequent—adjustments in prices.13

As stressed by Vavra (2014) and Berger and Vavra (2018), the specific prop-
erties of the frequency and the dispersion of price changes, as well as their joint
dynamics, are key to unveiling the endogenous and exogenous determinants of
price adjustment, and to tracking time variation in the pass-through of nominal
shocks to inflation. The remainder of the analysis will be devoted to examine
these aspects.

3 Framing the analysis

To explore the origins of time variation in the moments of the price-change
distribution and how they may reflect different price adjustment protocols, we
draw on the generalized Ss setting developed by Caballero and Engel (2007).
This model has two clear advantages that make it particularly indicated to disci-
pline our data. First, it is consistent with lumpy and infrequent price adjustments—
which are typically seen as distinctive traits of price setting—along with en-
compassing several pricing protocols,14 without necessarily being constrained
to match any of those specifically. Second, as we allow for time variation in the
determinants of price adjustment, we can estimate the model over each cross

13In A we show that composition effects have no role in generating the facts presented in this
section: here we compare the moments of the distribution of price changes with their counter-
parts obtained by averaging the corresponding moments of the price quotes, for each of the 25
COICOP group categories.

14To focus on two somewhat extreme examples, the generalized Ss model can account for
both price setting à la Calvo (1983)—where firms are selected to adjust prices at random and
price flexibility is fully determined by the frequency of adjustment—as well as for schemes à
la Caplin and Spulber (1987)—where adjusting firms change prices by such large amounts that
the aggregate price is fully flexible, regardless of the frequency of adjustment. In fact, Berger
and Vavra (2018) show how this empirical setting provides a good fit to the data generated by
different structural models (e.g., Golosov and Lucas, 2007, Nakamura and Steinsson, 2010a).
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section of price microdata, matching different price-setting statistics.
This framework assumes that, due to price rigidities, the log of firm i’s actual

price may deviate from the log of its target or reset price, denoted as p∗it. As a
result, the observed distribution of price changes arises from the interaction
between the distribution of price deviations from their optimal (reset) values
and a hazard function that determines the probability of a price change given
the deviation.

To formalize this, we define the price gap as xit ≡ pit−1−p∗it, where a positive
(negative) price gap indicates a falling (rising) price upon adjustment. A price
is adjusted when the associated price gap becomes sufficiently large. After the
adjustment, pit = p∗it. Therefore, when a price change is enacted, the change in
price reflects the original misalignment in prices, i.e. ∆pit = −xit.15 If lit rep-
resents the number of periods since the last price change, then the adjustment
reflects the accumulated shocks: ∆pit =

∑lit
j=0 ∆p

∗
it−j , where ∆p∗it = µt+υit, with

µt representing a shock to nominal demand and υit an idiosyncratic shock.
Caballero and Engel (2007) assume the presence of iid idiosyncratic shocks

to the adjustment cost, which gives rise to price stickiness. By integrating over
the possible realizations of these shocks, the adjustment hazard function, Λt(x),
is obtained. This function represents the probability—at time t—that a firm will
adjust its price before knowing the current adjustment cost draw, given that it
would have adjusted by x in the absence of adjustment costs (i.e., if the adjust-
ment cost draw was zero). Denoting with ft (x) the cross-sectional distribution
of price gaps immediately before an adjustment takes place at time t, aggregate
inflation can be recovered as

πt = −
∫
xΛt (x) ft (x) dx. (3)

Notice that the Calvo pricing protocol implies the same hazard across x’s (i.e.,
Λ′
t (x) =

∂Λ′
t

∂x
= 0 and Λt (x) = Λt > 0, ∀x). Conversely, upward-sloping hazard

functions provide direct evidence of state dependence in price setting and imply
that prices further away from their reset values are more likely to change.

15This assumption is empirically validated in the analysis of Karadi et al. (2023) using scan-
ner price data, where the optimal reset price is proxied by the price of close competitors.
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3.1 Taking the model to the data

To take the model to the data, we need to specify a functional form for the
distribution of price gaps and the hazard function. We postulate that the distri-
bution of price gaps at time t, ft (x), can be accounted for by the Asymmetric
Power Distribution (APD henceforth; see Komunjer, 2007). The probability den-
sity function of an APD random variable is defined as

ft (x) =


δ(ϱt,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(ϱt,νt)

ϱ
νt
t

∣∣∣x−θtψt

∣∣∣νt] if x ≤ θt
δ(ϱt,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(ϱt,νt)

(1−ϱt)νt

∣∣∣x−θtψt

∣∣∣νt] if x > θt
, (4)

with δ (ϱt, νt) =
2ϱ

νt
t (1−ϱt)νt

ϱ
νt
t +(1−ϱt)νt

. The parameters θt and ψt > 0 capture the location
and the scale of the distribution, whereas 0 < ϱt < 1 accounts for the degree
of asymmetry. Last, the parameter νt > 0 measures the degree of tail decay:
for ∞ > νt ≥ 2 the distribution is characterized by short tails, whereas it fea-
tures fat tails when 2 > νt > 0. This functional form nests a number of stan-
dard specifications, such as the Normal (νt = 2), Laplace (νt = 1) and Uniform
(νt → ∞). Moreover, it can capture intermediate cases between the Normal and
the Laplace distribution, consistent with the steady-state distribution of price
changes according to Alvarez et al. (2016).

We then assume that the hazard function can be characterized by an asym-
metric quadratic function:

Λt (x) = min
{
at + btx

2
1{x>0} + ctx

2
1{x<0}, 1

}
, (5)

where 1{z} is an indicator function taking value 1 when condition z is verified,
and zero otherwise. This parsimonious specification nests the Calvo pricing
protocol for bt = ct = 0, while allowing for asymmetric costs of adjustment,
which has recently been supported by Luo and Villar (2021) and Karadi et al.
(2023).16

16We have also checked that our results are robust to plausible variations to the specifica-
tion of these functional forms. Using a mixture of two Normal distributions, or a mixture of a
Laplace and a Normal distribution for the price gap, as well as an asymmetric inverted normal
function for the hazard function, delivers results that are qualitatively similar to those reported
in the next section.
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Unlike Berger and Vavra (2018), we allow for asymmetry in both the hazard
function and the distribution of price gaps. In A, we show that the distribution
of price changes exhibits significant asymmetry, with skewness varying notably
over time. Moreover, we document substantial differences in the frequency of
price adjustments, average price changes, and dispersion between positive and
negative price changes. By allowing asymmetry in both the price gap distribu-
tion and the hazard function, we avoid imposing restrictive assumptions about
the sources of non-linearity.

3.2 Estimation and identification

Alvarez et al. (2023) highlight that the moments of the price gap distribu-
tion, together with the frequency of price changes, provide enough information
to identify the distribution of price gaps and the hazard function. Therefore,
given the parametric specifications of ft (x) and Λt (x), we estimate seven pa-
rameters for each cross section of price microdata, so as to match the following
moments of the distribution of price changes: mean, median, standard devia-
tion, interquartile range, difference between the 90th and 10th quantile of the
distribution, as well as (quantile-based) skewness and kurtosis (as in Groen-
eveld and Meeden, 1984).17 We also match the frequency and the average size of
prices movements, conditioning on positive and negative price changes. Last,
we match the observed rate of inflation. The estimates are obtained by sim-
ulated minimum distance, using the identity matrix to weight different mo-
ments.18 C reports the estimates of the model.

While Alvarez et al. (2023) prove that Λt(x) and ft(x) are fully encoded in
the distribution of price changes and frt for the specific case of symmetric func-
tional forms, it remains an open question whether these results extend to a more
general framework with a generic (asymmetric) distribution of price gaps and

17We match quantilic moments, as the 3rd and 4th moments of the cross-sectional distribu-
tion are quite sensitive to outliers.

18Altonji and Segal (1996) highlight that matching the unweighted distance between mo-
ments often performs better in small samples, as compared with using optimal weights. The
moments of the simulated distribution are estimated by drawing 100, 000 price quotes. We use
the Genetic Algorithm to minimize the quadratic distance between data moments and simu-
lated moments, so as avoid ending up in local minima (see, e.g., Dorsey and Mayer, 1995).
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an asymmetric hazard function such as the ones we consider. To address this,
D reports a series of exercises that highlight how close we come to identify the
shape of the price gap distribution and the hazard function. As a first exer-
cise, we evaluate the systematic impact of each of the estimated parameters
on the moments that we are matching. To this end, we vary the parameters of
ft (x) and Λt (x)—one at a time, while keeping all other coefficients at their base-
line estimates—and examine their impact on key moments of the price change
distribution, as well as on the resulting rate of inflation. All in all, marginal
changes in the parameters typically correspond to large variation in the mo-
ments we match, indicating the latter carry valuable information to identify the
parameter of interest. We then ask whether moment matching allows us to ap-
propriately identify/distinguish the shape of the price gap distribution from
that of the hazard function. To see this, we simulate price-change data from
the model, under different parameterizations, and then contrast the true price
gap distribution and the hazard function to their estimated counterparts. The
overall discrepancy is minimal, and the model does a good job at separately
identifying the parameters of ft (x) and Λt (x).

4 Inspecting price setting in a time-varying environ-

ment

The generalized Ss model emphasize the importance of tracking changes
in the distribution of price gaps and the hazard function. Caballero and Engel
(2007) show that, within their accounting framework, one can derive a mea-
sure of aggregate price flexibility. The latter measures the extent to which a
marginal shift in the price gap distribution (such as one stemming from a com-
mon macroeconomic shock that equally affects all price setters) translates into
contemporaneous inflation:

Ft = lim
µt→0

∂πt
∂µt

=

∫
Λt (x) ft (x) dx︸ ︷︷ ︸
Intensive Margin

+

∫
xΛ′

t (x) ft (x) dx︸ ︷︷ ︸
Extensive Margin

. (6)
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In turn, aggregate price flexibility can naturally be decomposed into an in-
tensive and an extensive margin component.19 The intensive margin (Int) mea-
sures the average frequency of adjustment, and accounts for the part of inflation
that reflects price adjustments that would have happened even in the absence
of the nominal shock. The extensive margin (Ext) accounts for the additional
inflation contribution of firms whose decision to adjust is either triggered or
canceled by the nominal shock. Therefore, it comprises both firms that would
have kept their price constant and instead change it, as well as firms that would
have adjusted their price but choose not to do it.20 Therefore, when the haz-
ard function is not flat, inflation’s response to shocks depends not only on the
frequency of price changes in each period but also on which prices adjust and
by how much. If the prices that do change are those with the most significant
misalignments, the aggregate price level remains highly flexible, possibly ex-
hibiting high volatility, and responding strongly to aggregate shocks even if
relatively few firms adjust their prices.

Figure 2 reports the estimated index of price flexibility (left panel), as well
as its decomposition into the intensive and the extensive margin of price adjust-
ment (right panel). Aggregate price flexibility is, on average, nearly twice as
high as what would be implied by the frequency of price changes alone. In fact,
our estimates of the hazard function are far from flat, providing strong evidence
that price setting is state-dependent.21 This corroborates the findings of Karadi
et al. (2023), who—using scanner price data and a different methodology—also
estimate a U-shaped hazard function for the Euro Area.

Ft exhibits substantial variation over time, with the intensive margin ac-
counting for approximately 50% of its variance, the extensive margin contribut-
ing by 33%, and the remaining share due to the positive comovement between

19It is also important to stress that, since Ft is simply derived from the accounting identity
(3), its validity as a measure of aggregate flexibility does not require that we take a stand on a
specific model of price setting.

20In this respect, it is useful to recall that, being characterized by a constant hazard function,
Calvo price setting implicitly assumes that the extensive margin is null.

21At the same time, we cannot rule out the presence of time dependence in price setting, as
the probability of adjusting prices for very small misalignments is not negligible, i.e., Λt(0) ̸= 0
for all t. In fact, shifts in the lower bound of the hazard function are a key driver of the overall
variation in price flexibility.
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Figure 2: PRICE FLEXIBILITY AND DIFFERENT MARGINS OF PRICE ADJUST-
MENT
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Notes: The left panel reports the estimated index of price flexibility, which is decomposed
in the right panel between the intensive and the extensive margin of price adjustment. The
shaded vertical bands indicate the duration of recessionary episodes. To aid the interpretabil-
ity of the results, we report a 12-month backward-looking moving average of the estimated
aggregate price flexibility and its components. This approach smooths out high-frequency
variability and seasonality in the estimates and, most importantly, aligns them with YoY infla-
tion.

the two components. Aggregate price flexibility rises significantly during the
Great Recession, with secondary peaks observed in the subsequent recessions.
After the Great Recession, both the intensive and extensive margins contract,
though the decline in the former is much more abrupt. During this period
of contraction in aggregate price flexibility, the extensive margin becomes the
dominant force. Even after both margins revert in 2016, the extensive margin
remains the predominant driver.

What explains the significant role of the extensive margin in price adjust-
ment over the past two decades? Figure 3 examines changes in the price gap
distribution and the hazard function in two cases of notable shifts in aggregate
price flexibility. Panel (a) compares 2011 to 2016, highlighting the post-Great
Recession decline in price flexibility. The hazard function shifts downward,
indicating that only substantial price misalignments are likely to be corrected.
As a result, the probability of price adjustment declines, increasing the relative
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importance of the extensive margin and explaining the observed rise in price
dispersion over that period (see Figure 1), despite the similarity in price gap
distributions. A lower hazard function is consistent with rising market power,
which reduces the cost of deviating from optimal prices. In fact, studies on
UK markups by DeLoecker and Eeckhout (2018) and Bell and Tomlinson (2018)
suggest that while markups have been stable in the decade 1996 to 2007, they
display a substantial rise thereafter.

Panel (b) examines the post-COVID inflation surge, during which large shocks
caused a pronounced shift in the price gap distribution. With prices substan-
tially below their optimal levels, a high probability of price adjustment—and
consequently, a stronger inflation response to shocks—emerged without neces-
sarily requiring significant changes in the hazard function. As a result, the in-
crease in price flexibility contributed to substantial inflationary pressures, and
inflation volatility, over this period. This aligns with the insights of Cavallo et al.
(2024), who highlight how large shocks and significant price misalignments am-
plify the pass-through of aggregate shocks, as observed in the post-COVID pe-
riod.

More generally, movements in price flexibility do not appear to occur ran-
domly: Ft goes from being positively correlated with output growth in the
decade preceding the Great Recession (0.35), to comoving negatively thereafter
(-0.14, considering 2019 as the endpoint of the second subsample). As for the
correlation with the rate of inflation, it is generally positive, particularly in the
2009-2020 time interval (0.79). It is worth emphasizing how changes in these
correlations over the two subsamples are, again, coherent with a shift from a
setting where most of the price changes are predetermined to one where the
extensive margin gains relevance,22 representing the main contributor to price
flexibility and, consequently, inflation volatility becomes particularly high.

22Henkel et al. (2023) report a similar view for selected Eurozone countries, indicating that
state dependence in price setting has considerably added to the COVID-19 shock.
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Figure 3: EXAMPLES OF SHIFTS IN PRICE GAP DISTRIBUTION AND HAZARD

FUNCTIONS

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

x

0

1

2

3

4

5

6

7

8

f(
x)

Distribution of Price Gaps: f(x)

2011
2016

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(x
)

Hazard Function: (x)

2011
2016

(a) 2011 vs 2016

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

x

0

2

4

6

8

f(
x)

Distribution of Price Gaps: f(x)

2019
2022

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(x
)

Hazard Function: (x)

2019
2022

(b) 2019 vs. 2022
Notes: Comparison of the estimated price gap distribution (left panel) and hazard function
(right panel) for two cases of shifts in aggregate price flexibility: high-flexibility regime (red),
low-flexibility regime (blue). These functions are estimated monthly across different years,
with the reported values representing the average estimate for each respective year. Panel
(a) illustrates the decline in the hazard function following the Great Recession (comparison of
2011 vs. 2016), while Panel (b) depicts the post-Pandemic inflation shock (comparison of 2019
vs. 2022).

Price flexibility and money non-neutrality Our analysis highlights a great
deal of variation in aggregate price flexibility. However, we acknowledge the
index we use is not the only available measure of price flexibility. Alvarez et al.
(2016) put forward a sufficient statistic for money non-neutrality, intended as
the cumulative output response to a nominal shock. They prove that, in a va-
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riety of sticky-price models, this is proportional to the steady-state ratio of the
kurtosis of the size distribution of price changes to the frequency of price ad-
justments.

Figure 4: COMPARISON WITH ALVAREZ ET AL. (2016)
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Notes: The left panel of the figure reports a scatter plot of the cumulated output response to a
monetary policy shock, as computed by Alvarez et al. (2016), against the index of price flexi-
bility, as computed by Caballero and Engel (2007). The right panel, instead, features a scatter
plot of the cumulated output response to a monetary policy shock against the cumulated infla-
tion response to a one-off 1% nominal shock, where we cumulate the inflation response over a
18-month period.

The left panel of Figure 4 proposes a direct comparison between Ft and
Kurt(∆pi)
frt(∆pi)

, where the latter is obtained by computing in every month a quantilic
version of the kurtosis of price changes, Kurt(∆pi), estimating it for each month
of the sample (see, e.g., Groeneveld and Meeden, 1984) and the frequency of
price adjustment, frt(∆pi). A clear (convex) negative relationship emerges, de-
spite the two statistics not being directly comparable, as one measures the in-
stantaneous pass-through of nominal shocks to prices, while the other focuses on
the cumulative impact of nominal shocks on output. In fact, it may well be the
case that a shock exerts a relatively low impact on prices, taking a long time to
be fully absorbed and leading to a large cumulative output response. To account
for this, we compute the cumulative response of inflation over the 18 months
following a one-off 1% nominal shock. The right panel of Figure 4 shows a strik-
ing (negative) correlation of our cumulative measure of price stickiness with the
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metric elaborated by Alvarez et al. (2016). This reinforces our confidence in the
empirical framework we rely upon to track movements in the price gap distri-
bution and the hazard function.

5 State dependence in inflation dynamics

Having established that price flexibility exhibits significant fluctuations through-
out the sample under examination, a natural question arises: do these move-
ments matter for our understanding of inflation dynamics? A straightforward
exercise may help contextualize our analysis of the connection between price
flexibility and inflation dynamics. To this end, we rely upon the Ss model esti-
mates to derive the response of inflation to an aggregate nominal shock across
two distinct periods—one characterized by relatively strong and the other by
relatively weak pass-through of nominal shocks to inflation, respectively.23 Fig-
ure 5 illustrates that inflation is more responsive and less persistent during peri-
ods of relatively high price flexibility. In light of this, price flexibility likely holds
valuable information for analyzing inflation dynamics. This insight arises nat-
urally in environments characterized by state-dependent pricing. TWe now ex-
amine whether aggregate inflation exhibits non-linearities consistent with these
properties, and discuss some key implications for the practice of inflation tar-
geting.

5.1 Price flexibility and inflation dynamics

We seek to examine how inflation generally behaves in periods of relatively
high and low flexibility. To this end, we employ a regime-switching autoregres-
sive moving average model, where the transition across regimes is a smooth
function of the degree of price flexibility. The STARMA(p,q) model is a gener-
alization of the smooth transition autoregression model proposed by Granger

23As we only identify the price gap distribution at each point in time, we are not able to
disentangle the contribution of the aggregate shock from that of idiosyncratic shocks. Therefore,
for purely illustrative purposes, we choose an autoregressive specification for the first-moment
shock. More details are available in E.
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Figure 5: IMPULSE RESPONSES FROM THE Ss MODEL
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Notes: The graphs display the average inflation response to a 1% aggregate nominal shock,
µt, in two periods of relatively low and high price flexibility. The shock is assumed to die out
with a persistence component of 0.5 and is depicted by the thin black line (with a negative
sign). The left panel (low price flexibility) plots the average inflation response in 2011, while
the right panel (high price flexibility) plots the average inflation response in 2016. In each of
the two panels the vertical line indicates the half-life of the shock.

and Terasvirta (1993). Estimating a traditional ARMA(p,q) for each regime sep-
arately entails a certain disadvantage in that we may end up with relatively few
observations in a given regime, which typically renders the estimates unstable
and imprecise. By contrast, we can effectively rely upon more information by
exploiting variation in the probability of being in a particular regime, so that es-
timation and inference for each regime are based on a larger set of observations
(Auerbach and Gorodnichenko, 2012).24

We assume that inflation can be described by the following model:

πt = G
(
F̃t−1, γ

)(
ϕH0 +

p∑
j=1

ϕHj πt−j + εHt +

q∑
i=1

θHi ε
H
t−i

)

+
[
1−G

(
F̃t−1, γ

)](
ϕL0 +

p∑
j=1

ϕLj πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

)
, (7)

24Estimating the properties of a given regime by relying on the dynamics of inflation in a
different regime would bias our results towards not finding any evidence of non-linearity. In
light of this, the asymmetries we will be reporting in the remainder of this section acquire even
more statistical relevance.
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with εit ∼ N (0, σ2
i ) for i = {L,H} . Moreover, we set G

(
F̃ , γ

)
= (1 + e−γF̃)−1,

where F̃ denotes the normalized flexibility index and γ is the speed of transition
across regimes.25 We allow for different degrees of inflation persistence across
the two regimes, as captured by the regime-specific autoregressive and moving
average coefficients, as well as for different volatilities of the innovations in ei-
ther regime. The likelihood of the model can be easily computed by recasting
the system in state space (see, e.g., Harvey, 1993, Ch.4). We use Monte Carlo
Markov-chain methods developed in Chernozhukov and Hong (2003) for esti-
mation and inference. The parameter estimates, as well as their standard errors,
are directly computed from the generated chains (see F for further details).

Focusing on the post-1996 sample, we estimate the model by imposing that,
in both regimes, the long-run inflation forecast is 2%, consistent with the Bank
of England’s mandate. The parameter γ captures the speed at which we switch
between classifying periods as high or low flexibility regimes, and its identifi-
cation relies on non-linear moments. We estimate this parameter by selecting
the value that maximizes the likelihood function. The estimated value of γ im-
plies that roughly 20% of the observations are classified in the high-flexibility
(low-flexibility) regime, defined by G

(
F̃t−1; γ

)
> 0.8 (G

(
F̃t−1; γ

)
< 0.2). The

upper-left panel of Figure 6 reports G
(
F̃t−1; γ

)
. This specification clearly iden-

tifies the 2009-2012 and post-2021 periods as characterized by high price flexibil-
ity, whereas the 2002-2005 and 2015-2016 periods are marked by low flexibility.
Based on the Akaike criterion, we select p = 2 and q = 1.26

The bottom panels of Figure 6 present the impulse-response functions to a
one-standard deviation shock to inflation in each of the two regimes, and com-
pares them to the response from an equivalent linear model. Consistent with
Figure 5, the inflation response is more muted and significantly more persistent
during periods of relatively low price flexibility, with the half-life of the shock
being nearly 50% longer, compared to periods of high flexibility. Furthermore,

25We compute a backward-looking MA(12) of the flexibility index to smooth out high-
frequency variability and get rid of the seasonality in the data. Moreover, we lag the index
by one month, in order to avoid potential endogeneity with respect to CPI inflation.

26Our key insights are not affected by the exact specification of the STARMA(p,q) model (see
G). The results are also robust to plausible values of γ.
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Figure 6: PRICE FLEXIBILITY AND INFLATION DYNAMICS

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

0

0.2

0.4

0.6

0.8

1
Probability of High Flexibility Regime Standard Deviation of Inflation

0 1 2 3 4 5 6
0

0.05

0.1

0.15
Low Flexibility
High Flexibility

Low Flexibility

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8
Low Flexibility
Linear

High Flexibility

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8
High Flexibility
Linear

Notes: The upper panels report the probability of being in a high flexibility regime,
G
(
F̃t, γ

)
= (1 + e−γF̃t)−1, and the distributions of the estimated inflation volatility in the

high and low price flexibility regimes. The lower panels report the responses of inflation to a
one-standard deviation shock in the STARMA(2,1) model. Specifically, the bottom-left (right)
panel graphs the response in the low (high) price flexibility regime. In both cases, we also
report the the response from a (linear) ARMA(2,1) model. 68% confidence intervals, and the
distribution of inflation volatility, are built based on the Markov Chain Monte Carlo (MCMC)
method developed in Chernozhukov and Hong (2003). In each of the two IRFs charts the ver-
tical dashed line indicates the half-life of the shock.

the implied inflation volatility is twice as large in the high-flexibility regime,
with the on-impact response 50% higher relative to the linear model. These
results are broadly supportive of the basic insights of the Ss model illustrated
in the previous section, and highlight the importance of keeping track of the
degree of price flexibility.
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Neglecting the non-linearities tied to price flexibility may result in a signif-
icant underestimation of inflation’s response during periods of high flexibility,
and an overestimation during periods of low flexibility. This is highly relevant,
from the perspective of forecasting and policy making. Before we delve into
this, though, we want to establish to which extent inflation volatility and persis-
tence correlate with price flexibility. While the overall level of inflation depends
on the blend and magnitude of shocks impacting the economy, the degree of
price flexibility is likely to play a key role in shaping their propagation. In this
respect, it is useful to recall that Forbes et al. (2018) highlight how UK inflation
has shown relatively high volatility and low persistence in the 2008-2012 time-
span and, to a lesser extent, around the early 2000s.27 These periods have been
associated with large departures of inflation from the target. Consistently, price
flexibility as from our estimates peaks in both periods.

The upper-right panel of Figure 6 reports the distribution of the estimated
inflation volatility, in the high and low price flexibility regimes. Periods of high
flexibility display significantly greater volatility, whereas inflation volatility is
substantially lower under low price flexibility. This suggests that time-varying
inflation volatility can, at least in part, be attributed to the changing degree of
price flexibility. For instance, during the particularly low-volatility period of
2014–2016, YoY inflation has reached its lowest point, dipping below zero for
the first time in the post-WWII period. Analyses from the Bank of England
attribute such weak inflation to the decline in oil prices and the depreciation of
the Pound.28 Our analysis suggests that low price flexibility may have extended
this period of subdued inflation. By contrast, the post-COVID period and the
2009–2012 period, both identified as high price flexibility phases, are marked by
notably higher inflation volatility.

5.2 State dependence and inflation projections

An immediate implication of the analysis so far is that inflation volatility
and persistence may vary significantly, depending on aggregate price flexibil-

27Volatility is measured by standard deviation of the mean-reverting component of their
model of inflation.

28See, e.g., the Inflation Report published by the Bank of England on February 12, 2015.
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ity. Specifically, inflation tends to be more volatile, less persistent, and gener-
ally higher when flexibility is high. In this section, we test whether the Bank of
England and professional forecasters factor in the state-dependent properties of
inflation dynamics related to price flexibility, when forming their inflation ex-
pectations. If this properly accounted for, the resulting inflation forecast errors
should remain uncorrelated with the flexibility regime.

Each quarter, the Bank of England’s Inflation Report publishes YoY inflation
forecasts from the Monetary Policy Committee, alongside forecasts from mar-
ket participants. Both sets of forecasts target the Bank of England’s inflation
index, which switched from RPIX to CPI inflation in December 2003. We con-
struct quarterly forecast errors as the difference between the appropriate (mean)
forecast29 and realized inflation at a given horizon: et+h|t = πY oYt+h|t−πY oYt+h . There-
fore, positive (negative) errors denote an overprediction (underprediction) of
inflation. Forecast errors are then regressed on the logistic transformation of the
flexibility index, G

(
F̃t−1; γ

)
. Specifically, we use a quadratic spline function

with a knot at 0.5:

et+h|t = a0 + a1(Gt−1 − 0.5) + a2(Gt−1 − 0.5)2 + a31{Gt−1>0.5}(Gt−1 − 0.5)2, (8)

where 1{Gt−1>0.5} is an indicator function equal to 1 when Gt−1 > 0.5 and zero
otherwise. This specification allows us to capture various potential relation-
ships between the flexibility regime and the bias in inflation forecasts. The
analysis is conducted on a sample of qurterly forecasts produced by the Bank of
England and professional forecasters, with h = 0, ..., 7 and over the 1998-2024
time interval.

Table 1 summarizes the regression results. The first six columns present the
estimated forecast bias (along with associated p-values) for low, average, and
high levels of flexibility (i.e., G = 0.2, 0.5, 0.8). The last two columns of the table
provide the p-value for the null hypothesis that no relationship exists between
the forecast error and the flexibility regime (i.e., H0 : a1 = a2 = a3 = 0), as well
as the corresponding R-squared (adjusted for the number of regressors).

29The results remain virtually unchanged if we use the median or the mode, instead of the
mean forecast.
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Table 1: INFLATION FORECAST ERRORS AND PRICE FLEXIBILITY

(a) BoE MPC RPIX/CPI Forecast Error Bias

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 0.04 [0.19] -0.02 [0.58] -0.05 [0.15] 0.22 1.38
1 0.12 [0.23] 0.02 [0.86] -0.13 [0.34] 0.38 0.06
2 0.24 [0.19] -0.02 [0.94] -0.37 [0.20] 0.12 2.73
3 0.34 [0.20] -0.16 [0.62] -0.77 [0.10] 0.02 6.29
4 0.43 [0.19] -0.37 [0.38] -1.21 [0.06] 0.00 9.63
5 0.55 [0.11] -0.61 [0.21] -1.70 [0.03] 0.00 15.33
6 0.62 [0.07] -0.72 [0.20] -1.92 [0.02] 0.00 17.34
7 0.60 [0.08] -0.64 [0.26] -1.86 [0.03] 0.00 14.96

(b) Market Participants’ Forecast Error Bias

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 0.02 [0.65] -0.09 [0.23] -0.10 [0.10] 0.25 1.09
1 0.02 [0.87] -0.05 [0.71] -0.11 [0.44] 0.88 -2.28
2 0.19 [0.26] -0.05 [0.82] -0.37 [0.21] 0.18 1.85
3 0.28 [0.26] -0.23 [0.50] -0.79 [0.10] 0.04 5.47
4 0.33 [0.28] -0.47 [0.28] -1.24 [0.06] 0.01 8.57
5 0.44 [0.16] -0.74 [0.16] -1.76 [0.03] 0.00 14.67
6 0.50 [0.09] -0.88 [0.14] -2.02 [0.02] 0.00 17.30
7 0.47 [0.12] -0.82 [0.18] -1.99 [0.02] 0.00 15.04

Notes: The table reports the results of a quadratic spline regression of the forecast er-
rors et+h|t (for different forecast horizons, h, measured in quarters) on a quarterly aver-
age of an indicator of the normalized price flexibility index, F̃ : Gt−1 = G(F̃t−1; γ) =

(1+e−γF̃t−1)−1. The regression is specified as et+h|t = a0+a1 (Gt−1 − 0.5)+a2 (Gt−1 − 0.5)
2
+

a3 (Gt−1 − 0.5)
2
1{Gt−1>0.5}G

2
t−1, where 1{Gt−1>0.5} is an indicator function taking value 1

when Gt−1 > 0.5 and zero otherwise. The upper panel refers to the Bank of England MPC’s
RPIX/CPI forecast errors, while the bottom panel considers market participants’ forecast er-
rors. For each value of G, the two columns report the fitted êt+h|t evaluated at different levels
of the indicator and the p-value associated with the null hypothesis that êt+h|t is equal to 0
(this is calculated using Newey-West standard errors), respectively. The penultimate column
(F-stat) reports the p-value of the null hypothesis that all the coefficients associated to the flex-
ibility regime are equal to 0 (i.e., H0 : a1 = a2 = a3 = 0). The last column reports the adjusted
R-squared, denoted by R̃2.



While inflation forecasts tend to be unbiased when aggregate price flexibil-
ity is low or average, there is evidence of a significant negative bias during peri-
ods of high price flexibility. These findings support the notion that information
regarding price flexibility is not fully utilized by either the Central Bank or mar-
ket participants. In particular, we detect a significant negative bias in inflation
forecasts from three quarters ahead (h > 2). This bias is not only statistically
significant, but also quantitatively relevant: in periods of high flexibility, for
h > 4, the forecast is 150 basis points lower than it should be when accounting
for the level of flexibility. Accounting for this negative bias during periods of
high flexibility alone explains above 15% of the variability in the forecast error
in our sample.

Robustness and extensions A potential concern with the specification in equa-
tion (8) is that large forecast errors may simply reflect large inflation realiza-
tions, which often follow periods of high price flexibility. To address this, Table
F1 in Appendix F presents the forecast error as a percentage of realized infla-
tion, confirming the broad pattern of results. Notably, for h > 4, the bias can
reach up to 50% of realized inflation. Additionally, we examine whether aggre-
gate price flexibility influences forecast uncertainty, measured as the squared
absolute forecast error (see, e.g., Reifschneider and Tulip, 2019). In line with the
prediction of a state-dependent model, our findings indicate that high flexibility
periods are associated with significantly more volatile inflation outcomes, with
absolute forecast errors for h > 4 nearly twice as large as in low-flexibility pe-
riods (see Table F2, Appendix F). Thus, when projecting inflation, practitioners
should account for heightened uncertainty during periods of high price flexibil-
ity.

5.2.1 Price flexibility and post-pandemic inflation forecasts

Failure to predict the scale and persistence of inflation is widely acknowl-
edged, and has drawn criticism towards the Bank of England, ultimately lead-
ing to an external review of its inflation forecasts. Bernanke (2024) notes that
similar forecast errors also characterize those of professional forecasters and,

29



more generally, Central Banks across G7 countries. Figure 7 compares the es-
timated bias from the specification in Eq. 8 using the full sample (this corre-
sponds to the results in Table 1) with the bias for the subsample ending in 2020
Q4. While the underprediction of the latest inflationary peak—which coincides
with a period of rather elevated price flexibility—affects our estimates, evidence
of a significant and substantial bias is already present in data prior to the post-
Pandemic inflation surge.

This raises the question of whether earlier recognition of this evidence might
have reshaped the prevailing narrative on inflation persistence that dominated
global and UK policy discussions from mid-2021 to mid-2022. During this pe-
riod, the Bank of England consistently predicted a rapid return to target infla-
tion, within a two-year horizon. Figure 8 compares the BoE’s inflation forecasts
with realized inflation and bias-adjusted forecasts, over four quarters starting in
2020 Q4. To avoid look-ahead bias, we re-estimate the bias-adjustment model in
Equation (8) every time we produce a forecast, using real-time data. While the
precise magnitude of the inflationary spike was by any means unforeseeable,30

adjusting for the bias would have consistently resulted in higher inflation fore-
casts, particularly at longer horizons, over this period. In fact, bias-adjusting the
forecast would have signaled that inflationary pressures were already building
with the reopening of the economy in late 2020. While inflation remained well
below the Central Bank’s target at the time, the bias-adjusted forecast predicted
a clear overshoot, with inflation exceeding 3% in 2022—contrasting with the
Bank of England’s projection of a slow convergence to the target. More broadly,
these adjusted forecasts suggested a more cautious view on the transitory na-
ture of the inflation spike as early as 2021 Q1, indicating that inflation would
remain well above target by the end of the forecast horizon.

While the quantitative improvements in forecast accuracy from incorporat-
ing time-varying price flexibility may seem modest, their economic significance
should not be overlooked. During the post-COVID inflation surge, the Bank
of England and other forecasters predicted a relatively swift return of inflation

30Applying Blanchard and Bernanke (2023)’s model to the UK, Haskel et al. (2024) highlight
that this is largely attributable to the (unforeseen) rapid rise in energy and food commodity
prices during the period under scrutiny.
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Figure 7: INFLATION FORECAST ERROR BIAS
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(b) Market Participants’ Forecast

Notes: Each panel reports the expected forecast error, êt+h|t, conditional on values of a the
high-flexibility regime probability, G. The blue line describes the mean forecast based on the
full sample (1997:Q3 - 2024:Q2).The dashed line shows the conditional forecast error based on
the sample excluding the post-COVID-19 period (i.e., from 2021:Q1). The bands indicate the
90% confidence interval. The dots plot observed forecast error against the mean of G in the
quarter. Panel (a) and (b) refer to the Bank of England MPC’s RPIX/CPI forecast errors, while
the panel (c) and (d) considers market participants’ forecast errors. Negative values indicate a
forecast that underpredicts the actual inflation outcome.

to the 2% target—an expectation that ultimately proved incorrect. To put this
in context, it is worth recalling that the Bank of England MPC’s June 2021 min-
utes report that the Committee expected “the direct impact of commodity prices
on CPI inflation would be transitory”. Later that year, Governor Bailey reiter-
ated this view, maintaining that despite early signs of rising prices, “the price
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Figure 8: BIAS-ADJUSTED FORECASTS
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Notes: Each panel reports the CPI inflation forecasts produced by the BoE in the last quarter of
2020 and the first three quarters of 2021, as well as the corresponding bias-corrected forecasts
and realizations. The bias adjustment is based on the fitted values from estimating Equation
(8) re-estimated with available data in real-time. To get the bias, the high-flexibility regime
probabilities G from the first month of the respective quarter is used. Specifically, G(F̃t; γ) =

[0.82, 0.80, 0.76, 0.90] for the quarters under consideration.

pressures will be transient” (Bailey, 2021).31 Our counterfactual exercise sug-
gests that, had forecasters accounted for the prevailing high price flexibility,
they would have recognized that inflationary pressures were likely to persist
for longer, even without additional shocks. For instance, the forecast produced

31Even after a substantial revision to its projections in Q3 2021, the Bank of England con-
tinued to emphasize the transitory nature of the inflation surge. This stance was reflected in
statements such as, “The Committee’s central expectation is that current elevated global and
domestic cost pressures will prove transitory,” which appeared as a summary view in the MPC
minutes of both August and September 2021.
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at the time of the June 2021 meeting would have indicated inflation remaining
persistently above target, nearing 4% by the end of the forecast horizon, rather
than gradually returning to target. This insight could have prompted the Bank
of England to revise its policy stance earlier or more decisively. In this sense,
the improvement in the forecast performance has not to be merely read from a
statistical standpoint. Rather, it highlights a missed opportunity to identify in-
flation persistence in real time, with potentially significant implications for the
timing and calibration of monetary policy.

6 Concluding remarks

Analyzing UK price microdata, we document substantial time variation in
aggregate price flexibility, emphasizing the critical role of the extensive mar-
gin of price adjustment. Relying solely on the frequency of price adjustment
significantly understates both the level and variability of price flexibility. Our
findings highlight the prominence of state-dependent price setting, particularly
in the aftermath of the Great Recession and during the recent post-Pandemic
inflation surge.

Most importantly, we identify strong non-linearity in the price response to
inflationary shocks, fundamentally driven by shifts in price flexibility. Neither
the Bank of England nor professional forecasters fully account for state depen-
dence when projecting future inflation. As a result, they tend to underestimate
inflationary pressures during periods of high price flexibility, when inflation is
more volatile and less persistent. This oversight was particularly consequen-
tial in the early phase of the post-Pandemic inflation surge, when forecasters
consistently projected a swift return of inflation to target.

Our findings highlight the crucial role of timely access to the microdata un-
derlying aggregate price indices for Central Banks. In this regard, the UK ONS
stands out among national statistical agencies for its commitment to making
this data publicly available almost in real-time. These data are not only cru-
cial for refining theoretical models of price adjustment, but also for tracking
inflation dynamics and identifying shifts in sectoral pricing behavior. By inte-
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grating timely information from price microdata into their forecasting models,
policymakers can improve their understanding of inflationary forces and en-
hance their ability to respond swiftly to changing economic conditions.
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A ONS Microdata on consumer price

Our sample covers the 1996:M2-2024:M8 time window, thus resulting into about
37.4 million observations. Each month around 109, 000 prices are collected by a mar-
ket research firm on behalf of the ONS. There are also about 150 items for which the
corresponding price quotes are centrally collected. These are excluded from the pub-
licly available dataset, as the structure of their market segment might allow the iden-
tification of some price setters, or because of the need to frequently adjust for qual-
ity changes.1 Price quotes are recorded on or around the second or third Tuesday of
the month (Index day), with the exact date being kept secret to avoid abnormal prices
that, among other things, may be due to the collection of prices during bank-holiday
weeks, or to price manipulations by service providers and retailers. Furthermore, to
make sure the collected price quotes are valid prices, the ONS has set various checks
in place, both at the collection point and at later stages in the process. As a prelimi-
nary step in handling the dataset, we only employ price quotes that have been marked
as being validated by the system or accepted by the ONS. Thus, any price quote that
has been marked as missing, non-comparable, or temporarily out of stock is excluded
from the sample. We refer to the remaining subset of prices—which make for approx-
imately 60% of those included in the CPI—as Classification Of Individual COnsumption
by Purpose (COICOP) price quotes.

Each price quote is classified by region, location, outlet and item. The region
refers to the geographical entity within the UK from which a given price quote is
recorded. The location is intended as a shopping district within a given region: on
price-collection days, 141 different locations are visited.2 For a given location, the shop
code is a unique but anonymized id associated with the outlet from which the quote is
recorded. In turn, each shop is classified according to whether it is independent (i.e.,
part of a group comprising less than 10 outlets at the national level) or part of a chain
(i.e., more than 10 outlets). Due to a confidentiality agreement between the ONS and
the individual shops, for each price quote only the region, outlet and item classifica-
tions are published. In light of this, some of the price quotes may not be uniquely
identified. This is typically the case when the ONS samples the same item, in outlets
that are part of a chain, but for multiple locations within the same region. As an ex-
ample, in March 2013 we pick an item with the following characteristics: ‘Women’s
Long Sleeves Top’ (id: 510223) sold in multiple outlets (shop type: 1) within the region
of London (region: 2). With these coordinates at hand we retrieve two different price
quotes: one location sells the item for £22, and one for £26. In February 2013 the price
quotes for the same type of good were recorded at £25 and £26, respectively. The price
quotes are so close that telling the two price trajectories apart may be challenging. To
make sure that price trajectories can be uniquely identified, we look at ‘base prices’,
which are intended as the January’s price for each of the items under scrutiny.3 Even
after conditioning on base prices, though, a small portion of price trajectories are still
not uniquely identified (about 0.6%, on average): we opt for discarding them. In Table

1This is typically the case for personal computers, whose frequent model upgrades impose the use
of hedonic regressions, so as to enhance comparisons across time.

2Until August 1996, 180 different locations were being sampled. New locations are chosen every
year, with about 20% of them being replaced. As a result, a location is expected to survive an average
of about four years in the sample.

3The base price is typically relied upon to normalize price quotes and calculate price indices, or to
adjust for changes in the quality and/or quantity of a given good.



Table A.1: SUMMARY STATISTICS

Categories
COICOP Unique History Regular

Price Quotes
Total 37, 390, 169 37, 171, 595 34, 063, 217 30, 401, 232

Avg. per Month 109, 009 108, 372 99, 309 88, 633

Avg. CPI Weight 59.81% 59.51% 54.89% 50.07%

Sales and Recoveries
Avg. per Month (Unweighted) 10.44% 10.46% 10.69%

Avg. per Month (Weighted) 5.14% 5.14% 4.82%

Product Substitutions
Avg. per Month (Unweighted) 1.02% 1.02% 0.58%

Avg. per Month (Weighted) 0.48% 0.48% 0.25%

Notes: COICOP stands for the Classification Of Individual COnsumption by Purpose price
quotes used to calculate the CPI index; Unique indicates the COICOP price quotes that are
uniquely identified; History refers to the subset of price quotes in the Unique category for which
we can identify at least two consecutive price quotes; Regular refers to the price quotes in the
History category that do not correspond to sales, product substitutions, or recovery prices. For
each of these categories, we compute the weighted contribution of each category’s price quotes
to the CPI index, as well as the relative number of price quotes corresponding to sales, recovery
prices, and product substitutions. Whenever weighted, these statistics are obtained by account-
ing for CPI, item-specific, stratum and shop (i.e., elementary aggregate) weights. Sample period:
1996:M2-2024:M8.

A.1 the column labeled ‘History’ refers to the price quotes with an identifiable history
that spans at least two consecutive periods. Following the criteria outlined above, we
drop about 9, 000 quotes per month.4

To aggregate the individual price quotes into a single price, we also make use of
the following weights produced by the ONS:5 the shop weights, which are employed to
account for the fact that a single item’s price is the same in different shops of the same
chain (e.g., a pint of milk at a Tesco store);6 the stratification weights, which reflect the
fact that purchasing patterns may differ markedly by region or type of outlet;7 finally,
the item and COICOP weights reflect consumers’ expenditure shares in the national
accounts.

4Due to a particularly low coverage, Housing and Housing Services(COICOP 4) and Education
(COICOP 10) are excluded from the sample. We also exclude price changes larger than 300%, which we
deem to be due to measurement errors. These take place rarely (< 0.02%).

5See Chapter 7 of the ONS CPI Manual (ONS, 2019).
6In this case the ONS enters a single price for a pint of milk, but the weight attached to this is ‘large’,

so as to reflect that all Tesco stores within the region have posted the same price.
7Four levels of sampling are considered for local price collection: locations, outlets within location,

items within location-outlet section and individual product varieties. For each geographical region,
locations and outlets are based on a probability-proportional-to-size systematic sampling, where size
accounts for the number of employees in the retail sector (locations) and the net retail floor space (out-
lets).
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A.1 On the representativeness of the data

This section provides additional details on the construction of the dataset. The ONS
data have a good coverage of all COICOP sectors, with the exception of Housing and
Housing Services (COICOP 4), Communication (COICOP 8) and Education (COICOP
10), whose coverage are less than 21%, 6%, and 3%, respectively. Given the extremely
low coveage, we exclude COICOP 4 and 10. We keep COICOP 8, as the available price
quotes are clustered in a small subset of items, such as Flower Delivery, Telephone for
home use and Phone Accessories.8

The left panel of Figure A.1 contrasts the weights assigned to each of the COICOP
sectors to those employed to build the CPI (re-normalized to exclude COICOP 4 and
10). Overall, we observe that using the available price quotes results into relatively
larger weights for COICOP 1 and 11, whereas sectors 7 and 9 are underweighed. The
right panel of Figure A.1 reports the official CPI inflation together with the inflation
series retrieved from all the available price quotes (labeled COICOP ) and the inflation
obtained once all filters described in Section 2 are applied (labeled Regular). Unfiltered
data track quite closely the official numbers, whereas the ‘regular’ series displays a
robust correlation with the official data (roughly 0.84), and shows a positive bias. The
latter mainly emerges from the exclusion of sales from the sample.

Figure A.2 provides a number of additional statistics calculated on price microdata.
Figure A.3 reproduces some of the moments used in the model estimation, where the
latter are obtained by aggregating sectoral estimates (using 25 COICOP groups). The
moments track each other closely, therefore demonstrating that sectoral composition
has a limited effect on the aggregate moment statistics.

8Due to the small number of price quotes in this sector, the results would be little affected by its
exclusion from the analysis.
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Figure A.1: REPRESENTATIVENESS
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Notes: The left panel contrasts the weights assigned to each of the COICOP sectors to those as-
signed to build the CPI (re-normalized to exclude COICOP 4 and 10). The right panel reports
the official CPI inflation, together with the inflation series retrieved from all the available price
quotes (labeled COICOP ) and the inflation obtained once all filters described in Section 2 are ap-
plied (labeled Regular). The COICOP codes are (1) Food And Non-Alcoholic Beverages, (2) Alco-
holic Beverages, Tobacco And Narcotics, (3) Clothing And Footwear, (5) Furnishings, Household
Equipment And Routine Household Maintenance, (6) Health, (7) Transport, (8) Communication,
(9) Recreation And Culture, (11) Hotels, Cafes And Restaurants, (12) Miscellaneous Goods And
Services.



Figure A.2: ADDITIONAL STATISTICS FROM PRICE MICRODATA
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counterparts of these statistics are obtained by conditioning them on positive and negative price
changes, respectively. All series are in percentage terms. In the upper-right panel we report the
mirror image of the average of negative price changes. The skewness of the distribution of price
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Figure A.3: AGGREGATE VS DISAGGREGATED MOMENTS
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terparts obtained by averaging the corresponding moments of the price quotes obtained for each
of the 25 COICOP group categories. The shaded vertical band indicates the duration of recession-
ary episodes.



B A simple decomposition of YoY inflation variation

In this section, we provide a step-by-step derivation of how the variability of year-
on-year (YoY) inflation can be decomposed into the contributions of frequency and
average price changes, as reported in Eq. (2).

Denote month-on-month (MoM) inflation as πt. As stated in Eq. (1), we have πt =
frt ×∆pt. Taking a first-order approximation, it follows that

πt − π ≈ fr(∆pt −∆p) + ∆p(frt − fr), (9)

where variables with bars denote full-sample averages. Higher-order terms account
for the variation in inflation due to the covariation between the frequency of price
adjustments and the average price change.

Define the 12-month moving average operator applied to a generic variable κt as
κ̃t ≡ 1

12

∑11
j=0 κt−j . Year-on-year (YoY) inflation can then be recovered as the (backward-

looking) 12-month moving average of the annualized MoM inflation, i.e., πY oYt =∑11
j=0 πt−j = π̃At , where πAt ≡ 12πt denotes the annualized MoM inflation.
Substituting the first-order approximation into this relationship, we can express

the variation of YoY inflation as a function of the variability of the (12-month moving
average of the) frequency of price adjustment and price change:

πY oYt − πY oY ≈ 12×
{
fr(∆̃pt −∆p) + ∆p(f̃ rt − fr)

}
. (10)

Finally, defining the annualized average price change as ∆pAt ≡ 12∆pt, we obtain

πY oYt − πY oY ≈ fr(∆̃pt
A
−∆p

A
) + ∆p

A
(f̃ rt − fr), (11)

where the long-run average YoY inflation is given by πY oY = fr ×∆p
A

.
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C Model estimates

Figure C.1: PARAMETERS OF THE PRICE GAP DISTRIBUTION
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Notes: The red lines denote the three VAT changes in the sample. The shaded vertical bands
indicate the duration of recessionary episodes.

Figure C.2: PARAMETERS OF THE HAZARD FUNCTION
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Notes: The red lines denote the three VAT changes in the sample. The shaded vertical bands
indicate the duration of recessionary episodes.
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Figure C.3: FIT OF THE Ss MODEL (SELECTED MOMENTS)
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D Model identification

In this appendix we check whether the SMM estimation strategy we employ for
the estimation of the generalized Ss model is able to separately identify the shape of
the price gap distribution and the hazard function.

The parameters of the model are identified through their ability to match the se-
lected moments. As noted in Section 3.1, we match the following moments of the
distribution of price changes: mean, median, standard deviation, interquartile range,
difference between the 90th and 10th quantile of the distribution, as well as (quantile-
based) skewness and kurtosis. We also match the frequency and the average size of
prices movements, after distinguishing between positive and negative price changes,
as well as the observed rate of inflation.

We evaluate the systematic impact of each parameter on the moments that we are
matching. To this end, the first exercise we perform consists of investigating whether
marginal variation in each of the parameters of the model affects the moments that
we are matching. Figure D.1 and D.2 report the results of this exercise. We fix all the
parameters at their median estimates, and for each column we vary one of of them at
the time (within the range of values that the parameters assume in our estimation) and
report the impact of these changes for some selected moments.

All parameters have an impact on a number of moments, and in the expected di-
rection. For instance, increasing the scale (tail) parameter of the price gap distribu-
tion increases (decreases) monotonically the implied dispersion of the distribution of
(non-zero) price changes, and in both cases decreases the skewness and the kurto-
sis. Instead, changing the location or the shape parameter has an opposite impact
on skewness and kurtosis, and affects non-monotonically the dispersion (with higher
dispersion obtained for a more skewed distribution, regardless of the sign of the skew-
ness). As for the parameters of the hazard function, changing the constant term affects
equally the frequency of price adjustment, whereas changes in the slope for positive
(negative) price gaps impacts the frequency of negative (positive) price changes and
the average negative (positive) price changes, leaving invariate the positive (negative)
side. These results confirm the observation of Berger and Vavra (2018) for the specific
functional forms of the price gap distribution and the hazard function we employ.

Having established that all the parameters have an impact on the moments we
attempt to match, a fair question is whether moment matching allows us to appropri-
ately identify/distinguish the shape of the price gap distribution from the shape of
the hazard function. In fact, one might question whether the specific model we choose
is able to identify a fatter price gap distribution from a steeper hazard function, or a
skewed price gap distribution from an asymmetric hazard function. To this end, we
simulate samples of 100,000 price changes from the model, and then fit the model on
each of these synthetic samples by SMM, matching the same moments we use in the
baseline estimation (see Section 3.1). Figure D.3 contrasts the true price gap distribu-
tion (upper panel) and hazard function (lower panel) to the estimated counterparts.
We look at three possible different parameterizations of the model, and report the ‘fan
charts’ of the estimated functions. The specific parameterizations are merely meant to
serve for illustrative purposes: we would obtain very similar evidence by imposing al-
ternative specifications. Finally, for each set of calibrations, we simulate and estimate
the model over 200 different samples.

The charts highlight that the model is able to separately identify the shape of the
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price gap and hazard function in all the settings we consider. The discrepancy between
the true parametrization and the estimate is minimal, and the resulting match of the
flexibility index and its decomposition is very close to the true one.

It is also important to stress that Berger and Vavra (2018) produce a battery of ex-
ercises in support of our approach. Most importantly, they address how well the re-
sulting measure of price flexibility—which only captures the impact response of prices
to a nominal shock—reflects overall non-neutrality. To this end, they estimate simu-
lated data from the CalvoPlus model of Nakamura and Steinsson (2008), and report
close comovement between the impact response from the structural model and the
estimated index of price flexibility from the accounting framework. Notably, this exer-
cise also addresses the criticism towards estimating the generalized Ss model in every
period, as if observations were independent across time. In this respect, we should
stress that standard structural frameworks tend to impose a rather tight relationship
between distributions at a given point in time and how they evolve. In line with our
predecessors, we claim that imposing flexible functional forms within a period—in a
way that represents an intermediate step between a fully structural approach and a
non parametric one—allows us to exploit valuable information, in the perspective of
studying time variation in aggregate price flexibility.
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Figure D.1: IDENTIFICATION AND THE PARAMETERS OF ft (x)
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Notes: In each panel, we vary one of the parameters of ft (x) at the time—while keeping the other
coefficients at their baseline estimate—and report its effect on key moments of the price change
distribution, as well as the resulting rate of inflation.
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Figure D.2: IDENTIFICATION AND THE PARAMETERS OF Λt (x)
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Notes: In each panel, we vary one of the parameters of Λt (x) at the time—while keeping the other
coefficients at their baseline estimate—and report its effect on key moments of the price change
distribution, as well as the resulting rate of inflation.
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Figure D.3: MODEL SIMULATIONS AND EMPIRICAL FIT
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Notes: The red line corresponds to the ‘true’ DGP, while the blue shades correspond to the [5,10,20,. . . 90,95]-
th quantile of the estimated price gap distribution (upper panel) and hazard function (lower panel). The
following parameterizations are considered: Panel (a): θ = −0.02, ψ = 0.07, ϱ = 0.42, ν = 1.9, a = 0.06, b =

20, c = 30; Panel (b): θ = −0.02, ψ = 0.07, ϱ = 0.42, ν = 2.2, a = 0.08, b = 15, c = 8; Panel (c): θ = −0.02, ψ =

0.07, ϱ = 0.58, ν = 2.2, a = 0.08, b = 0.15, c = 0.15.



E Details on the computation of the impulse response

function from the Ss model

This appendix gives a brief account of how we compute the impulse response func-
tions from the generalized Ss model presented in Section 3. We start by specifying a
process for the exogenous (first-moment) shock.9 Specifically, we assume that:

µt = ρµt−1 + ηt.

Thus, we fix ρ = 0.5 and select a shock η0 = −1%. In light of this, should prices be fully
flexible, we would observe a 1% increase of inflation that dies out relatively quickly.

The impulse responses are then calculated as:

IRFj = E(πt+j|µt+j = µ̂t+j)− E(πt+j|µt+j = 0)

= −
∫
zjΛt (z) ft (z) dz +

∫
xjΛt (x) ft (x) dx,

where zj = xj + µ̂t+j . Note that, by definition, the cumulative impact of the shock
equals the sum of the µt’s.

F Estimation of the STARMA (p,q) model

Recall the smooth transition ARMA model, STARMA(p,q), in Section 5.1:

πt = G
(
F̃t−1; γ

)(
ϕH0 +

p∑
j=1

ϕHi πt−j + εHt +

q∑
i=1

θHi ε
H
t−i

)

+
[
1−G

(
F̃t−1; γ

)](
ϕL0 +

p∑
j=1

ϕLi πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

)
. (12)

This can be easily casted in state space. Therefore the likelihood can be calculated
recursively using the Kalman filter (see, e.g., Harvey, 1993, Ch.4). Since the model is
highly non-linear in the parameters, it is possible to have several local optima and
one must try different starting values of the parameters. Furthermore, given the non-
linearity of the problem, it may be difficult to construct confidence intervals for param-
eter estimates, as well as impulse responses. To address these issues, we use a Markov
Chain Monte Carlo (MCMC) method developed in (Chernozhukov and Hong, 2003,
henceforth CH). This method delivers not only a global optimum but also distribu-
tions of parameter estimates.

Denote with θ the vector of parameters. We employ the Hastings-Metropolis algo-
rithm to implement CH’s estimation method. Specifically, our procedure to construct
chains of length N can be summarized as follows:

9Since we assume that the shock has the same impact on all price quotes, the shock acts as a location
shifter of the price gap distribution.
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• Step 1: Draw ϑ(n+1), a candidate vector of parameter values for the chain’s n + 1
state, as ϑ(n+1) = θ(n)+un where un is a vector of iid shocks taken from a student-t
distribution with zero mean, ν = 5 degrees of freedom and variance Ω.

• Step 2: Take the n+ 1 state of the chain as

θ(n+1) =

 ϑ(n+1) with probability min

{
1,

L(ϑ(n+1))
L(θ(n))

}
θ(n) otherwise

where L (θ) denotes the value of the likelihood of the model evaluated at the
parameters values θ.

Specifically, we use an adaptive step for the value of Ω, i.e. this is recalibrated
using the accepted draws in the initial part of the chain and then adjusted on the fly
to generate 25 − 35% acceptance rates of candidate draws, as proposed in Gelman
et al. (2004). We use a total of 50,000 draws, and drop the first 25,000 draws (i.e., the
‘burn-in’ period). We then pick the 1-every-5 accepted draws to mitigate the possible
autocorrelations in the draws. We run a series of diagnostics to check the properties
of the resulting distributions from the generated chains. We find that the simulated
chains converge to stationary distributions and that simulated parameter values are
consistent with good identification of parameters.

CH show that θ= 1
N

∑N
i=1 θ

(i) is a consistent estimate of θ under standard regularity
assumptions of maximum likelihood estimators. CH also prove that the covariance
matrix of the estimate of θ is given by the variance of the estimates in the generated
chain. Furthermore, we can use the generated chain of parameter values θ(i) to con-
struct confidence intervals for the impulse responses.
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G Additional Results and Robustness

Figure G.1: PRICE FLEXIBILITY AND INFLATION PERSISTENCE STARMA(2,4)
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Notes: Figure G.1 reports the responses of inflation to a 1% shock in a STARMA(2,4) model. The
left (right) panel graphs the response in the low (high) price flexibility regime. In both cases we
also report the response from a (linear) ARMA(2,4) model. 68% confidence intervals are built
based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and
Hong (2003). In each of the two charts the vertical line indicates the half-life of the shock.

Figure G.2: PRICE FLEXIBILITY AND INFLATION PERSISTENCE STARMA(1,1)
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Notes: Figure G.2 reports the responses of inflation to a 1% shock in a STARMA(1,1) model. The
left (right) panel graphs the response in the low (high) price flexibility regime. In both cases we
also report the response from a (linear) ARMA(1,1) model. 68% confidence intervals are built
based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and
Hong (2003). In each of the two charts the vertical line indicates the half-life of the shock.
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Figure G.3: PRICE FLEXIBILITY AND INFLATION VOLATILITY
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Notes: Each panel reports the distribution of the estimated inflation volatility in the two regimes. The
left panel refers to a STARMA(2,4) model, while the right panel refers to a STARMA(1,1).
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Table G.1: INFLATION FORECAST ERRORS AND PRICE FLEXIBILITY

(a) BoE MPC RPIX/CPI Forecast Error Bias: Alternative specification

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 3.93 [0.25] 0.65 [0.71] -1.34 [0.51] 0.48 -0.54
1 47.56 [0.20] 17.47 [0.27] -17.46 [0.16] 0.19 1.68
2 102.88 [0.20] 44.77 [0.26] -39.35 [0.15] 0.13 2.59
3 109.27 [0.17] 46.67 [0.27] -45.56 [0.10] 0.06 4.28
4 154.30 [0.17] 63.71 [0.28] -64.01 [0.11] 0.04 5.44
5 190.03 [0.17] 76.38 [0.30] -84.81 [0.08] 0.03 6.03
6 194.77 [0.17] 81.92 [0.31] -87.86 [0.08] 0.02 7.20
7 187.19 [0.15] 93.80 [0.30] -76.39 [0.05] 0.02 7.37

(b) Market Participants’ Forecast Error Bias

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 1.54 [0.59] -2.20 [0.46] -2.55 [0.33] 0.57 -0.97
1 37.15 [0.24] 13.02 [0.36] -14.54 [0.17] 0.28 0.81
2 88.29 [0.20] 39.01 [0.26] -34.35 [0.14] 0.13 2.70
3 91.58 [0.16] 38.45 [0.29] -40.00 [0.08] 0.06 4.53
4 129.63 [0.17] 52.11 [0.30] -55.81 [0.09] 0.03 5.85
5 153.94 [0.16] 58.79 [0.34] -73.26 [0.06] 0.02 6.82
6 166.39 [0.17] 66.96 [0.35] -80.60 [0.05] 0.02 7.42
7 164.33 [0.16] 82.24 [0.33] -71.73 [0.03] 0.02 7.09

Notes: The table reports the results of a quadratic spline regression of the forecast errors as a per-
centage of realized inflation, ẽt+h|t = 100 × et+h|h

πY oY
t+h

(for different forecast horizons, h, measured

in quarters). The regression is specified as ẽt+h|t = a0 + a1 (Gt−1 − 0.5) + a2 (Gt−1 − 0.5)
2
+

a3 (Gt−1 − 0.5)
2
1{Gt−1>0.5}G

2
t−1, where 1{Gt−1>0.5} is an indicator function taking value 1 whenGt−1 >

0.5 and zero otherwise. The upper panel refers to the Bank of England MPC’s RPIX/CPI forecast errors,
while the bottom panel considers market participants’ forecast errors. For each value of G, the two
columns report the fitted ˆ̃et+h|t evaluated at different levels of the indicator and the p-value associated
with the null hypothesis that ˆ̃et+h|t is equal to 0 (this is calculated using Newey-West standard errors),
respectively. The penultimate column (F-stat) reports the p-value of the null hypothesis that all the co-
efficients associated to the flexibility regime are equal to 0 (i.e., H0 : a1 = a2 = a3 = 0). The last column
reports the adjusted R-squared, denoted by R̃2.
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Table G.2: FORECAST UNCERTAINTY AND PRICE FLEXIBILITY

(a) BoE MPC RPIX/CPI (Absolute) Forecast Errors (b) BoE MPC RPIX/CPI (Squared) Forecast Errors

Horizon ẑt at G = 0.2 ẑt at G = 0.8 F-stat R̃2 Horizon ẑt at G = 0.2 ẑt at G = 0.8 F-stat R̃2

0 0.14 [0.00] 0.16 [0.00] 0.15 2.24 0 0.03 [0.00] 0.04 [0.00] 0.23 1.28
1 0.36 [0.00] 0.43 [0.00] 0.14 2.30 1 0.26 [0.01] 0.40 [0.01] 0.17 1.96
2 0.49 [0.00] 0.79 [0.00] 0.14 2.41 2 0.58 [0.03] 1.33 [0.04] 0.14 2.34
3 0.70 [0.00] 1.13 [0.00] 0.23 1.26 3 0.88 [0.08] 3.20 [0.08] 0.12 2.69
4 0.79 [0.00] 1.56 [0.01] 0.10 3.29 4 0.67 [0.37] 6.07 [0.10] 0.06 4.31
5 0.81 [0.00] 1.80 [0.02] 0.08 3.65 5 0.30 [0.78] 8.47 [0.13] 0.04 5.25
6 0.74 [0.01] 1.94 [0.02] 0.04 5.00 6 0.06 [0.96] 9.90 [0.13] 0.03 5.68
7 0.83 [0.01] 1.83 [0.02] 0.15 2.40 7 1.05 [0.41] 8.98 [0.15] 0.18 1.92

(c) Market Participants’ (Absolute) Forecast Errors (d) Market Participants’ (Squared) Forecast Errors

Horizon ẑt at G = 0.2 ẑt at G = 0.8 F-stat R̃2 Horizon ẑt at G = 0.2 ẑt at G = 0.8 F-stat R̃2

0 0.15 [0.00] 0.21 [0.00] 0.18 1.84 0 0.08 [0.15] 0.18 [0.19] 0.53 -0.79
1 0.40 [0.00] 0.43 [0.00] 0.11 2.87 1 0.46 [0.06] 0.136 [0.04] 0.18 1.77
2 0.46 [0.00] 0.81 [0.00] 0.08 3.56 2 0.53 [0.04] 1.40 [0.04] 0.13 2.759
3 0.63 [0.00] 1.18 [0.00] 0.13 2.58 3 0.76 [0.13] 3.37 [0.08] 0.11 3.00
4 0.70 [0.00] 1.63 [0.01] 0.04 5.12 4 0.51 [0.48] 6.40 [0.10] 0.05 4.61
5 0.73 [0.00] 1.87 [0.02] 0.04 5.30 5 0.08 [0.94] 8.94 [0.12] 0.03 5.79
6 0.67 [0.01] 2.08 [0.01] 0.02 7.35 6 -0.24 [0.83] 10.58 [0.12] 0.02 6.78
7 0.73 [0.01] 1.99 [0.02] 0.06 4.64 7 0.68 [0.58] 9.80 [0.13] 0.10 3.30

Notes: The table reports the results of a quadratic spline regression of the absolute (LHS) and squared
(RHS) forecast errors (for different forecast horizons, h, measured in quarters) on a quarterly average
of an indicator of the normalized price flexibility index, F̃ : Gt−1 = G(F̃t−1; γ) = (1 + e−γF̃t−1)−1.
The regression is specified as zt = a0 + a1(Gt−1 − 0.5) + a2(Gt−1 − 0.5)

2
+ a31{Gt−1>0.5}(Gt−1 − 0.5)

2,
where 1{Gt−1>0.5} is an indicator function taking value 1 when Gt−1 > 0.5 and zero otherwise, zt =

|et+h|t| (tables (a) and (c)) and zt = e2t+h|t (tables (b) and (d)). The upper panels refer to the Bank
of England MPC’s RPIX/CPI forecast errors, while the bottom panels consider market participants’
forecast errors. For each value of G, the two columns report the fitted value evaluated at different levels
of the indicator and together the p-value associated with the null hypothesis that this value is equal to
0 (this is calculated using Newey-West standard errors), respectively. The penultimate column (F-stat)
reports the p-value of the null hypothesis that all the coefficients associated to the flexibility regime are
equal to 0 (i.e., H0 : a1 = a2 = a3 = 0). The last column reports the adjusted R-squared, denoted by R̃2.


