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Abstract

This paper introduces and characterizes behaviorally a model of choice over menus of actions
in which the individual experiences regret or elation if, after uncertainty resolves, the choice
from the menu is inferior or superior to available alternatives. The revealed preference charac-
terization of the model combines two contrasting forces: a preference for having fewer options
in order to reduce ex post regret, and a preference for having more options in order to increase
ex post elation. An application of the model to information acquisition shows that instrumen-
tal information is always valuable. Anticipated elation drives an apparently irrational aversion
to delegate choices to an informed agent. Lastly, anticipated elation also generates a desire to
include options that will not be selected from the menu, a behavior that is often ascribed to
naive time-inconsistency.

KEYWORDS: REGRET, ELATION, FLEXIBILITY, COMMITMENT, INFORMATION

JEL CLASSIFICATION: D01, D91

1 Introduction

Individuals experience regret if after observing the outcome of a decision they realize that a better

course of action was possible. Symmetrically, they experience elation when they realize that things

could have been worst (Bell, 1982; Loomes and Sugden, 1982). Both regret and elation arise from

the ex post comparison between the choice and the available alternatives, therefore they affect the

individual’s desire to include or exclude options. On one side, an individual anticipating regret can

have a desire to have fewer options so as to reduce the possibility that her choice is ex post inferior

to the alternatives. On the other side, anticipating elation generates a preference for having more

options so as to increase the possibility that her choice is ex post superior to the alternatives.

Being opposite forces, it seems that only the relative strength of regret and elation is identifiable

by observing revealed preferences, while their absolute identification would require additional

*ESOMAS Department and Collegio Carlo Alberto, University of Torino, daniele.pennesi@unito.it
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data. For example, by observing a preference for having a larger menu, we can infer that the value

of elation was stronger than the cost of regret, but it is not clear how to separately “measure” the

two (see the example in Section 2.2).1

In this paper, we solve this identification problem and we show that revealed preferences over

menus of (Anscombe-Aumann) acts are sufficient to separately identify regret and elation. We

introduce a two-period model of choice in which the value of a menu of acts is determined as if

the individual selects an act from the menu before uncertainty resolves, and experiences regret

or elation if her choice is ex post inferior or superior to other acts in the menu. We show that an-

ticipated regret is captured by a limited form of a preference for commitment according to which

the individual wants to eliminate options that won’t be selected from the menu and are unable to

generate elation. Symmetrically, anticipated elation is captured by a limited form of preference

for flexibility according to which the individual wishes to include options that cannot induce ex

post regret, even if these won’t be selected from the menu. Strengthening these two conditions

characterizes particular cases of the model in which regret, elation, or both disappear. Impos-

ing the full preference for flexibility characterizes the absence of anticipated regret. Assuming a

preference for commitment, à la Sarver (2008), characterizes the absence of anticipated elation.

Lastly, imposing the strategic rationality of Kreps (1979) characterizes the case in which neither

regret nor elation plays a role.

We apply the model to two choice situations in which regret is known to affect behavior: in-

formation acquisition and delegation. Differently from standing models of regret that generalize

expected utility, in our model instrumental information is always weakly valuable. This happens

because information helps making better choices from the menu (it is instrumental), but it does

not affect what is compared with the choice to determine ex post regret or ex post elation, namely

the ex post best and worst payoffs in the menu. Under particular conditions on the choice prob-

lem, the value of information is proportional to well-known measures of uncertainty: the average

reduction in entropy or variance between the prior and the posteriors. Concerning delegation, we

show that anticipated elation leads to the apparently irrational behavior of avoiding delegation to

a perfectly informed agent. Suppose that the individual is facing a choice between a menu and the

“optimal selection” from the menu, namely the action that delivers the best payoff from the menu

in each state of the world. We interpret choosing the optimal selection as delegating to a perfectly

1For a numerical parallelism, it is like identifying two numbers by only knowing their difference.
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informed agent. According to our model, the individual can turn down delegation because com-

mitment eliminates costly ex post regret, but it also eliminates the “thrill” of ex post elation. If the

anticipated value of elation is larger than the anticipated cost of regret plus the value of optimizing

the second-period choice, delegation is suboptimal.

We then study conditions under which the second-period choice is consistent with the in-

terpretation of the model. A new axiom called Sophistication relates first- and second-period

choices. It posits that an act is strictly valuable from the first-period point of view if either it will

be selected in the second period or it adds “valuable” elation. Thus, the model predicts an elation-

driven preference for having unchosen options, acts that are strictly valuable in the first period but

are not selected in the second. A preference for unchosen options can rationalize, for example, the

choice to buy an expensive health club membership (a monthly pass) even if the subsequent at-

tendance is low (DellaVigna and Malmendier, 2006). Such a behavior is often ascribed to naive

dynamic inconsistency, but the present model offers an alternative rationalization. Exercising

even once in a month generates more ex post elation after buying the monthly pass rather than

after buying the alternative pay-per-visit pass. If the anticipated value of elation in the monthly

pass compensates its higher per-visit cost, choosing the monthly pass becomes optimal even if

the individual knows that she will not exercise much.

Lastly, we provide a comparative notion of proneness to regret and elation and we characterize

it in terms of revealed preferences among menus. Parametrically, an individual j is less regret

and elation prone than i , if they share the same prior and the parameters measuring regret and

elation for j are equal to that of i but scaled by a common factor smaller than one. Behaviorally,

whenever the choices of individual i are aligned with her anticipated second-period choice, hence

“not affected by regret and elation”, so are the choices of j .

The paper is structured as follows: Section 2 introduces the framework and a motivating ex-

ample. The model is introduced and characterized behaviorally in Section 3. This section also

contains the comparative static analysis. Section 4 discusses applications of the model to infor-

mation acquisition and delegation. Section 5 introduces the axioms relating first- and second-

period choices. Lastly, Section 6 contains a review of the relevant literature, and Appendix A the

proofs of the results in the main text.

3



2 Framework and a motivating example

2.1 Framework and notation

Given a topological space M , we denote by ∆(M) the set of probabilities defined on the Borel σ-

algebra of M and we endow ∆M with the weak* topology. Uncertainty is modeled with a finite

set Ω of states of the world. An act is a function from Ω to consequences f :Ω→ X , where X is a

compact, convex subset of a topological vector space. A constant acts, i.e. f (ω) = x for all ω ∈Ω,

is identified with the element x ∈ X that it delivers. We denote by F the set of all acts, and by A

the set of all nonempty and compact subsets of F (the menus). For simplicity, the singleton
{

f
}

is denoted by f , the doubletons
{

f , g
}

by f ∪ g , and the menus
{

f , g ,h
}

by f ∪ g ∪h. As usual, the

mixture + of two acts, α f + (1−α)g for all α ∈ [0,1] is performed state-wise, (α f + (1−α)g )(ω) =
α f (ω)+ (1−α)g (ω), and the mixture of two menus αF + (1−α)G for any α ∈ [0,1] is a menu that

contains all the mixtures of the elements in F and G , αF + (1−α)G = {
α f + (1−α)g : f ∈ F, g ∈G

}
.

The primitive of our approach is a binary relation < representing the individual’s preference over

A . The interpretation is that the individual selects a menu expecting to choose an action from the

menu before uncertainty resolves. The binary relations ∼ and Â represent indifference and strict

preference and are defined from < in the usual way.

2.2 A motivating example

Consider three different vaccines a,b and c against a disease. There are two states of the world

representing uncertainty about the payoffs of each vaccine (e.g. efficacy in preventing the severe

form of the disease) and each state occurs with probability 1
2 . The payoffs (in utils) are the follow-

ing:

ω1 ω2

a 10 0

b 0 8

c −ε1 8+ε2

Table 1: Vaccine and payoffs

for some 0 ≤ ε1,ε2 with ε2 −ε1 ≤ 2.
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Suppose that an individual can decide to get the vaccine a or the vaccine b, while c is currently

not recommended for her age group. From the ex ante point of view, the vaccine a gives expected

utility 5 and b expected utility 4, so the individual will get a. If the true state of the world turns out

to be ω2, she can suffer regret, since getting b would have been better. If the true state turns out

to be ω1, she can enjoy elation (or rejoicing), “the extra pleasure associated with knowing that, as

matters have turned out, (s)he has taken the best decision” (p. 808 in Loomes and Sugden, 1982).

It is clear that both preferences a < a∪b and a∪b < a are rationalizable by a model of anticipated

regret and anticipated elation.

Suppose now that the third vaccine c becomes available. Accepting a is still the best action

from the ex ante point of view (the expected utility of c is 4+ 1
2 (ε2−ε1) ≤ 5 by the condition ε2−ε1 ≤

2). However, if ε2 > 0 the vaccine c is superior to both a and b in state ω2. Thus in that state,

selecting a in the presence of c generates a larger ex post regret with respect to the case in which

the unique alternative was b. If ε1 > 0 and the realized state is ω1, ex post elation is also larger

in the presence of c. Indeed, c would have been the worst choice and selecting a generates more

elation with respect to the case in which the unique alternative was b. Hence, from the first-period

point of view, having more options has an ambiguous effect on the individual’s welfare. The third

vaccine c increases costly regret if the state is ω2, and increases valuable elation if the state is

ω1. If the anticipated larger cost of regret of having c on top of a and b overcomes the additional

anticipated elation deriving from having c, she will prefer having only the two vaccines a and

b. Otherwise, she will prefer having the three vaccines a ∪b ∪ c. As a consequence, anticipated

regret and elation are consistent with both preferences, a ∪b ∪ c < a ∪b and a ∪b < a ∪b ∪ c and

observing one of the two preferences can only suggest that anticipated regret is “stronger” than

elation or vice versa. Even if we can observe the preference between a and a∪b, the identification

issue remains.

Despite these difficulties, the identification of anticipated regret and elation from revealed

preferences is still possible in our setting. Consider the case ε1 > 0 and ε2 = 0. The ex post regret

in the two menus a∪b and a∪b∪c is now the same. Indeed, choosing a does not generate regret

if the realized state is ω1, and generates the same regret in a ∪b and a ∪b ∪ c if the realized state

is ω2 (since the maximum payoff attainable would be 8, that is equal for b and c). However, if the

state ω2 realizes, choosing a in the presence of c generates more elation than choosing a when b
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represents the only available alternative. Therefore, anticipating elation makes the value of a∪b∪c

larger than that of a∪b, so that we will observe a∪b∪c < a∪b. More importantly, the difference

in utility between the value of a∪b∪c and a∪b is completely determined by anticipated elation,

thus we can “measure” it directly from preferences.

On the other side, consider the case ε1 = 0 and ε2 > 0. Again a < c, but now c does not add

anticipated valuable elation to a menu containing a and b. However, if the realized state is ω2,

choosing a in the presence of c generates more regret with respect to the situation in which b

represents the only available alternative. As a consequence, c becomes costly and committing

to a ∪ b is optimal, hence we will observe a ∪ b Â a ∪ b ∪ c. As before, the difference in utility

between the value of a ∪b and a ∪b ∪ c is completely determined by anticipated regret, thus we

can “measure” it directly from preferences.

We note that allowing for the positive effect of elation generates a violation of the preference

for “commitment” of Sarver (2008) that characterizes anticipated regret. His main axiom (adapted

to the present setting) posits that, when f < g and f ∈ A, then A < A∪g . The preference f < g im-

plies that g will not be selected from a menu containing f . However, if after uncertainty resolves g

turns out to be the optimal choice, the individual will suffer regret. Therefore, committing to A is

weakly preferred to A∪g . In the vaccine example a < c but it is possible that a∪b∪c Â a∪b. Such

an elation-driven preference for larger menus is distinguishable from alternative rationales lead-

ing to same preference, for example costly learning (Hyogo, 2007; Dillenberger, Lleras, Sadowski,

and Takeoka, 2014; Pennesi, 2015; Oliveira, Denti, Mihm, and Ozbek, 2017). In these models, the

individual acquires information before choosing an action from the menu. Facing larger menus

allows to better tailor the second-period choice to the information. However, in these models, a

state-by-state dominated action is never strictly valuable. This is because, regardless of the ac-

quired information, a state-by-state dominated action will never be selected in the second period.

For example, if ε2 = 0, the vaccine c is dominated in both states by the vaccine b, therefore, c can-

not add value to a menu containing b in a model of costly learning. To the contrary, c can add

value in our model of anticipated elation.
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3 The model

3.1 Representation

In this section, we introduce the Regret and Elation representation of a binary relation <.

Definition 1. A Regret and Elation representation (R&E) of < is a tuple (u, p,γ,θ) where u : X → R

is non-constant and affine, p ∈∆Ω and γ,θ ≥ 0, such that < is represented by V : A →R:

V (A) = max
f ∈A

Ep

[
u( f (ω))−γ

(
max
g∈A

u(g (ω))−u( f (ω))

)
+θ

(
u( f (ω))−min

g∈A
u(g (ω))

)]
. (R&E)

In our interpretation, the individual evaluates a menu A as if her choice from the menu A is

made before uncertainty resolves, and she experiences regret or elation if her choice is ex post

inferior or superior to other acts in A. Therefore, she considers the maximum expected utility she

can get from A subject to the anticipated cost of regret and the anticipated value of elation. Ex post

regret in state ω arises from the comparison between the selected act and the best act that could

have been selected from A in state ω, maxg∈A u(g (ω))−u( f (ω)). Symmetrically, ex post elation

in state ω arises from the comparison between the selected act and the worst act that could have

been selected from A in stateω,u( f (ω))−ming∈A u(g (ω)). From the first-period point of view, the

values of elation, regret and the second-period choice are weighted by the prior p. The parameters

γ and θ measure the marginal cost of regret and marginal value of elation, respectively. The R&E

representation can be decomposed in three parts:

V (A) = max
f ∈A

Ep [u( f )]︸ ︷︷ ︸
Material value

−γ
(
Ep

[
max
g∈A

u(g )

]
−max

f ∈A
Ep [u( f )]

)
︸ ︷︷ ︸

Anticipated Regret

+θ
(
max
f ∈A

Ep [u( f )]−Ep

[
min
g∈A

u(g )

])
︸ ︷︷ ︸

Anticipated Elation

.

The “material value” max f ∈A Ep [u( f )] represents the maximum expected utility that can be ob-

tained from A by choosing an action based on the available information. The term Ep
[
maxg∈A u(g )

]
represents the ex ante expected utility of learning the true state of the world before choosing an

act from A. Symmetrically, Ep
[
ming∈A u(g )

]
represents the expected “worst-case choice” from A.

Therefore, the term R(A, p) = Ep
[
maxg∈A u(g )

]−max f ∈A Ep [u( f )] measures the anticipated cost

of regret, the average difference between the maximum achievable payoffs and the actual choice.

Symmetrically, the term E(A, p) = max f ∈A Ep [u( f )] − Ep [ming∈A u(g )] measures the anticipated
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value of elation, the average difference between the actual choice and the worst choices.

Remark 1 (Choosing a vaccine). Consider the payoffs in Table 1. According to the R&E model, the

value of having two vaccines is V (a∪b) = 1
2 10+ 1

2 0−γ(1
2 10+ 1

2 8−5
)+θ (5−0) = 5−γ(4)+θ(5). By

adding the third vaccine c, we obtain V (a∪b∪c) = 5−γ(1
2 10+ 1

2 (8+ε2)−5
)+θ (

5− 1
2 0− 1

2 (−ε1)
)=

5−γ(
4+ 1

2ε2
)+θ (

5+ 1
2ε1

)
. Therefore, V (a ∪b ∪ c) ≥ V (a ∪b) if and only if θε1 ≥ γε2. As hinted in

section 2.2, if ε1 = 0 and ε2 > 0, V (a ∪b) ≥V (a ∪b ∪ c), whereas if ε1 > 0 and ε2 = 0, V (a ∪b ∪ c) ≥
V (a ∪b).

3.2 Behavioral characterization

This section contains the behavioral restrictions characterizing the R&E model. The first four ax-

ioms are standard:

Axiom (Weak Order). The binary relation< is a weak order and there exist f , g ∈F such that f Â g .

Axiom (Continuity). If F Â G Â H, then there are γ,γ′ ∈ (0,1) such that γF + (1−γ)H Â G Â γ′F +
(1−γ′)H.

The third axiom is the classical independence axiom: preferences are not reversed after mixing

with a common menu:

Axiom (Independence). For all menus F,G , H ∈ A and α ∈ (0,1), F < G ⇐⇒ αF + (1−α)H <

αG + (1−α)H.

The next axiom restricts the preference < only over singleton menus and corresponds to the

Anscombe-Aumann monotonicity axiom:

Axiom (Singleton Monotonicity). If f (ω)< g (ω) for all ω ∈Ω, then f < g .

According to the Anscombe-Aumann Theorem (Anscombe and Aumann, 1963), Weak Order,

Continuity, Independence and Singleton Monotonicity are necessary and sufficient for the restric-

tion of < to F to have a subjective expected utility representation:

Lemma 1. The binary relation < satisfies Weak Order, Continuity, Independence and Singleton

Monotonicity if and only if there are p ∈ ∆Ω and a non-constant u : X → R such that f < g if and

only if Ep [u( f )] ≥ Ep [u(g )].
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We now define three binary relations on A that can be derived from the restriction of < to

singletons and have intuitive interpretations. The first is denoted by <0 and defined as:

A <0 B ⇐⇒ ∃ f ∈ A : f < g , ∀g ∈ B.

By Lemma 1,

A <0 B ⇐⇒ max
f ∈A

Ep [u( f )] ≥ max
g∈B

Ep [u(g )].

The relation <0 represents the material value of a menu A because it reflects the value of each

menu in terms of the anticipated second-period choice, in the spirit of Kreps (1979). In our inter-

pretation, the second-period choice occurs before uncertainty resolves, hence it is based on the

prior and the utility u. The preference f < g then means that g won’t be selected from a menu

containing f . Therefore, A <0 B whenever the second-period choice from A is, in expectation, su-

perior to the second-period choice from B . The relation <0 reflects the preference of a individual

who does not anticipate ex post regret or ex post elation.

Before introducing the second relation, for each menu A and anω ∈Ω, we denote by A(ω) ⊆ X

the set A(ω) = {
g (ω) ∈ X : g ∈ A

}
. The optimal selection from A is the act f ∗

A ∈F defined as follows

f ∗
A (ω) ∈ argmaxx∈A(ω) u(x). The act f ∗

A is unique (up to indifference) and represents the best action

that can be selected from A when knowing the true state of the world. For example, with the

payoffs of Table 1, (a ∪b ∪ c)(ω1) = {10,0,−ε1}, whereas (a ∪b ∪ c)(ω2) = {0,0,8+ε2} and f ∗
a∪b∪c is

defined as f ∗
a∪b∪c (ω1) = 10, f ∗

a∪b∪c (ω2) = 8+ε2. The second relation, denoted by <∗, is defined as:

A <∗ B ⇐⇒ f ∗
A < f ∗

B

It ranks two menus according to the ex ante value of their optimal selection. Indeed, by Lemma 1,

A <∗ B ⇐⇒ Ep

[
max
f ∈A

u( f )

]
≥ Ep

[
max
g∈B

u(g )

]
.

The last relation derived from < is symmetrical to <∗ and depends on the worst selection from A

which we denote by f A∗ ∈ F . This act is defined as f A∗ (ω) ∈ argminx∈A(ω) u(x). It represents the

worst payoffs that can be achieved in A when knowing the true state of the world. For example,

with the payoffs of Table 1, f a∪b∪c∗ is f a∪b∪c∗ (ω1) =−ε1, f a∪b∪c∗ (ω2) = 0. The worst selection defines
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a binary relation over menus, denoted by <∗, in the following way:

A <∗ B ⇐⇒ f B
∗ < f A

∗

A menu A is preferred to a menu B according to <∗ if the ex ante value of the worst selection from

A is lower than the ex ante value of the worst selection from B . By Lemma 1, <∗ is represented by

A <∗ B ⇐⇒ Ep

[
min
g∈B

u(g )

]
≥ Ep

[
min
f ∈A

u( f )

]
.

The next axiom implies that the value of a menu is completerly determined by three components:

its material value, its optimal and its worst selections.

Axiom (Consistency). For all A,B ∈A , if A ∼0 B, A ∼∗ B and A ∼∗ B, then A ∼ B.

The last two axioms contain the behavioral restrictions that capture anticipated regret and

anticipated elation, as informally discussed in Section 2.2. The first axiom is a weaker version of

the Dominance axiom of Sarver (2008):

Axiom (Conditional Dominance). If f < g and for each ω ∈ Ω there is hω ∈ A such that g (ω) <

hω(ω), then f ∈ A implies A < A∪ g .

Note that by Singleton Monotonicity, an act h ∈ F such that g (ω) < h(ω) always exists and it

is equal to constant act x ∈ X that pays the worst payoff of g in all states. However, the axiom is

much weaker, as each ω could be associated to a payoff hω such that g (ω) < hω(ω). Since f < g ,

adding g to a menu containing f does not increase its material value, because g is not going to be

selected from A ∪ g . However, g can either increase anticipated elation or anticipated regret. But

the latter possibility is excluded because in each state, there is a payoff in A that is “worse” than

the payoff of g in that state. Therefore, g cannot increase ex post elation, but only ex post regret.

Thus committing to A is weakly preferred to A∪ g .

The next axiom has a symmetric interpretation:

Axiom (Conditional Flexibility). If f < g and for eachω ∈Ω there is hω ∈ A such that hω(ω)< g (ω),

then f ∈ A implies A∪ g < A.

Again by Singleton Monotonicity, an act h such that h(ω) < g (ω) always exists and it is equal

to the constant act x ∈ X that pays the best payoff of g in all states. However, the axiom is much
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weaker, as each ω could be associated to a hω such that hω(ω) < g (ω). Since f < g , adding g to

a menu containing f does not increase its material value, because g is not going to be selected

from A ∪ g . As before, g can still increase anticipated elation or anticipated regret. But the for-

mer possibility is excluded because in each state, there is a payoff in A that is “better” than the

payoff of g in that state. Therefore, g cannot add ex post regret, but only ex post elation. Thus

the extra-flexibility of having g in A is valuable. As hinted in Section 2.2, Conditional Flexibility

distinguishes our model from models of costly learning (Hyogo, 2007; Dillenberger et al., 2014;

Pennesi, 2015; Oliveira et al., 2017). In these models, if h(ω) < g (ω) for all ω ∈ Ω, h ∈ A implies

A ∼ A ∪ g . A state-by-state dominated action is never strictly valuable, since regardless of the ac-

quired information, g cannot be strictly superior to h. Conditional Flexibility however, allows for

a strict preference A∪ g Â A, if g generates anticipated elation.

The next theorem is the main result of this section and shows that the previous axioms are

necessary and sufficient to obtain a R&E representation of <:

Theorem 1. A binary relation < satisfies Weak Order, Continuity, Independence, Singleton Mono-

tonicity, Consistency, Conditional Dominance and Conditional Elation if and only if < has a R&E

representation (u, p,γ,θ).

The sketch of the proof is the following: the axioms Weak Order, Continuity, Monotonicity and

Independence are necessary and sufficient to obtain a representation V of < that is affine with

respect to mixture of menus. By construction, the three derived relations <0, <∗ and <∗ also have

affine representations on A . Moreover, Weak Order and Independence ensure that each menu is

indifferent to its convex hull, so that we can restrict our attention to convex menus. Since convex

menus form a mixture space and V ,V0,V ∗ and V∗ are affine, the Consistency axiom allows us to

write V as V (A) =α1 max f ∈F Ep [u( f )]+α2Ep [u( f ∗
A )]+α3Ep [u( f A∗ )]+α4 for some α1,α2,α3,α4 ∈R.

Because the restriction of V to singletons is represented by the expected utility Ep [u], the function

V can be rewritten as V (A) = (1+γ+θ)max f ∈F Ep [u( f )]−γEp [u( f ∗
A )]−θEp [u( f A∗ )] for some γ,θ ∈R.

The remaining axioms, Conditional Dominance and Conditional Flexibility, ensure that γ,θ ≥ 0 as

required by the R&E representation.

The last result of this section illustrates the uniqueness properties of the representation in The-

orem 1. We say that < has a non-degenerate R&E representation (u, p,γ,θ) if there is a measurable

E ⊆Ω such that 0 < p(E) < 1.
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Proposition 1 (Uniqueness). If (u′, p ′,γ′,θ′) is another R&E representation of <, then u = au′+b

for some a > 0 and b ∈R, p = p ′, θ = θ′ and, if < is regular, γ= γ′.
We conclude this section by showing how to identify the parameters γ and θ from revealed pref-

erences. Suppose that f < g and for each ω ∈Ω there is hω ∈ A such that hω(ω) < g (ω), then f ∈ A

implies A∪ g < A. It can be seen that

V (A∪ g )−V (A) = θ
(
Ep

[
min
f ∈A

u( f )

]
−Ep

[
min

f ∈A∪g
u( f )

])

Thus, the identification of θ follows from finding an act g and a menu A for which the difference

Ep
[
min f ∈A u( f )

]− Ep
[
min f ∈A∪g u( f )

]
is strictly positive. A similar argument, conditional on <

having a non-degenerate representation, allows us to identify γ.

3.3 Special cases

In this section, we strengthen the Conditional Dominance and Conditional Flexibility axioms to

characterize three particular cases of the R&E model. The first axiom is the standard Preference

for Flexibility and it is a strengthening of Conditional Flexibility:

Axiom (Preference for Flexibility). If B ⊆ A, then A <B.

A preference for having larger menus is intuitively inconsistent with the anticipation of ex post

regret. Indeed, having more options increases the probability that the actual choice is worse than

the available alternatives. Suppose that f < g and f ∈ A, then Preference for Flexibility implies

that A ∪ g < A. If g does not add material value to A because it will not be selected in the second

period, it is possible that it adds valuable ex post elation or costly ex post regret. However, the

menu A∪g is weakly preferred to A regardless of the act g , so also for those g that can generate ex

post regret, meaning that regret does not really affect preferences.

Corollary 1 (Elation Only). If the binary relation < has a R&E representation with γ= 0 it satisfies

Preference for Flexibility. The converse holds if < has a non-degenerate R&E representation.

The next axiom strengthens Conditional Dominance and it is an adaptation to the present

setting of the Sarver (2008)’s main axiom:

Axiom (Dominance). If f < g and f ∈ A, then A < A∪ g .
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If g does not add material value to A because it will not be selected in the second period, it

is possible that it adds valuable ex post elation or costly ex post regret. However, the menu A is

always weakly preferred to A ∪ g regardless of the act g , so also for those g that can generate ex

post elation, meaning that elation does not really affect preferences:

Corollary 2 (Regret only). If binary relation < has a R&E representation, it satisfies Dominance if

and only if θ = 0.

The last axiom is the Strategic Rationality of Kreps (1979) and it is implied by assuming both

the Preference for Flexibility and the Dominance axioms.

Axiom (Strategic Rationality). If f < g and f ∈ A, then A ∼ A∪ g .

If g does not add material value to A because it will not be selected in the second period, it is

possible that it adds valuable ex post elation or costly ex post regret. However, if the menu A is

indifferent to A ∪ g regardless of the act g , it means that neither ex post regret nor ex post elation

can play a role:

Corollary 3. If the binary relation < has a R&E representation with γ= θ = 0 then it satisfies Strate-

gic Rationality. If the binary relation < has a R&E representation and satisfies Strategic Rationality,

then θ = 0 and, if < is non-degenerate, γ= 0 .

3.4 Comparative analysis

In this section, we perform a comparative static analysis aimed at capturing a comparative notion

of proneness to regret and elation. We consider two individuals i and j each of which has a pref-

erences represented by a R&E model. The following definition behaviorally describes the notion

of being comparatively “less regret and elation prone”:

Definition 2. Suppose that <i and < j are represented by two R&E (uh , ph ,γh ,θh) for h = i , j . We

say that < j is less regret and elation prone (LREP) than <i if and only if for all A,B ∈A ,

A <i
0 B , and A <i B =⇒ A < j B.

An individual j is less regret and elation prone than an individual i if, whenever the preference

of the former is aligned with her material preference, so is the preference of the latter. Intuitively,

13



if anticipated regret and elation do not affect the preference of i , then the same is true for j . The

next theorem characterizes the parametric restrictions entailed by definition of LREP:

Theorem 2. Given binary relations <h , h = i , j with R&E representations (uh , ph ,γh ,θh). Then < j

is LREP than<i if and only if u j = aui+b for some a > 0 and b ∈R, p j = pi , and there existsκ ∈ [0,1]

such that γ j = κγi and θ j = κθi .

An individual j is less regret and elation prone than i if they share the same prior p and utility

u, but the parameters measuring the anticipated marginal cost of regret and marginal value of

elation or j are uniformly smaller that those of i .

4 Applications

This section contains two applications of the R&E model to choice situations in which regret often

plays a role.

4.1 Regret, elation and the value of information

Information is not always valuable for a regret-averse individual. For example, not knowing the

payoffs of alternative unchosen actions reduces if not eliminates ex post regret (e.g. Golman, Hag-

mann, and Loewenstein, 2017). In this section, we show that in the R&E model information is

actually always valuable when it is instrumental, namely when it arrives before the second-period

choice.

Given the prior p ∈ ∆Ω, we denote by Γ(p) the family of all experiments that are Bayesian-

consistent with respect to p:

Γ(p) =
{
µ ∈∆∆Ω : p =

∫
∆Ω

qµ(q)

}
.

Each element µ of Γ(p) represents an “experiment” or “source” of information that induces a pos-

terior q ∈∆with probability µ(q), by Bayesian updating the prior p.2 The condition p = ∫
∆Ω qµ(q)

derives from the consistency property of Bayesian updating: the average probability of a state

2An equivalent approach that is more common in the game theory literature assumes the existence of a set of
signals S that are correlated with the true state of the world, together with a function that assigns to each signal a
posterior.
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according to the posteriors is equal to the prior probability of that state. The next definition intro-

duces the classical Blackwell (1953)’s informativeness order on Γ(p):

Definition 3. Given µ,ν ∈ Γ(p) for some p ∈ ∆Ω, ν is Blackwell more informative than µ, written

νDµ, if ∫
∆Ω

φ(q)dν(q) ≥
∫
∆Ω

φ(q)dµ(q)

for all convex and continuous functions φ :∆Ω→R.

An experiment ν is Blackwell more informative than µ if any convex payoff function φ prefers

ν to µ. To highlight the dependence of V on a belief q ∈ ∆Ω, in this section we write V (A, q) in

place of V (A). Consider the value of acquiring information through an experiment µ ∈ Γ(p) before

selecting an action from the menu A, and denote such a value by V(µ, A), then

V(µ, A) =
∫
∆Ω

V (A, q)dµ(q).

It is the average value of A conditional on the posteriors q . The next proposition shows that more

informative experiments in the sense of Blackwell are weakly valuable.

Proposition 2. If νDµ then V(ν, A) ≥V(µ, A) for all A ∈A .

The result follows from noting that the material value of a menu increases with the Blackwell’s

order, because better information makes the second-period choice more likely to pick the best

action in A. However, information does not affect what is compared with the actual choice to

determine ex post regret or ex post elation, namely the best and worst selections from A. Since

both information sources µ and ν are Bayesian-consistent with p, the values of the optimal and

worst selections from A are, on average, equal to their values under prior. Therefore, the value

of information is completely determined by the additional material value of tailoring the second-

period choice to the realized posterior. To formalize this point, for a belief q ∈∆Ω, we can rewrite

the R&E model as V (A, q) = (1+γ+θ)max f ∈A Eq [u( f )]−γEq [maxg∈A u(g )]−θEq [ming∈A u(g )], then

V(ν, A) = (1+γ+θ)
∫
∆Ω

max
f ∈A

Eq [u( f )]dν(q)−γ
∫
∆Ω
Eq [max

g∈A
u(g )]dν(q)−θ

∫
∆Ω
Eq [min

g∈A
u(g )]dν(q).

Since ν is Blackwell more informative than µ, the material value of A is higher under ν than un-

der µ, that is
∫
∆Ωmax f ∈A Eq [u( f )]dν(q) ≥ ∫

∆Ωmax f ∈A Eq [u( f )]dµ(q). On the other side, the two
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remaining terms are averages of expected utilities of the optimal and worst selections from A,

respectively. By the Bayesian consistency property of ν and µ with respect to p,

∫
∆Ω
Eq [max

g∈A
u(g )]dν(q) = Ep [max

g∈A
u(g )] =

∫
∆Ω
Eq [max

g∈A
u(g )]dµ(q)

and ∫
∆Ω
Eq [min

g∈A
u(g )]dν(q) = Ep [min

g∈A
u(g )] =

∫
∆Ω
Eq [min

g∈A
u(g )]dµ(q).

Thus, from the point of view of the information acquisition stage, the values of the optimal and

worst selections are identical underν andµ. It is also interesting to consider the differenceV(ν, A)−
V(µ, A) which measures the “value of better information” given a menu A. It follows from the pre-

vious argument that

V(ν, A)−V(µ, A) = (1+γ+θ)

(∫
∆Ω

max
f ∈A

Eq [u( f )]dν(q)−
∫
∆Ω

max
f ∈A

Eq [u( f )]dµ(q)

)
(1)

for all A ∈ A . The term 1+γ+ θ multiplying the parenthesis in equation (1) shows that better

information, in the sense of Blackwell, has a triple effect: it increases the material value of a menu,

it reduces the anticipated cost of regret and, it increases the anticipated value of elation. The next

examples relates equation (1) with measures of uncertainty that are well-known in the literature

(e.g. Frankel and Kamenica, 2019).

Example 1 (Entropy). Suppose that the space X ⊆R++ and consider the menu:

A =
{

c ∈ XΩ : a ≤ c(ω),
∑
ω∈Ω

πωc(ω) =W

}
, for some W > 0 (2)

where 0 < a. The c ∈ XΩ are state-contingent consumption bundles, πω is the “state price” and W is

the total wealth. Then, if u(x) = ln(x) and for any q ∈∆Ωwith q(ω) > 0 for all ω ∈Ω

Eq

[
max
c∈A

u(c(ω))

]
=−H(q)−Eq [ln(πω)]+ ln(W )

where H(q) =−∑
ω∈Ω q(ω) ln q(ω) is the entropy of q ∈∆Ω. It follows that (proof in Appendix A)

V(ν, A)−V(µ, A) = (1+γ+θ)

(∫
∆Ω

H(q)dµ(q)−
∫
∆Ω

H(q)dν(q)

)
.
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If µ = δp , the uninformative experiment, V(A,ν)−V (A, p) = (1+γ+θ)
∫
∆ΩH(p)−H(q)dν(q) and

the value of information is proportional to the average entropy reduction between the prior and the

posteriors.

Example 2 (Variance). A different measure of uncertainty is represented by the variance of the prior

(see Frankel and Kamenica, 2019). It arises in the R&E model when the choice problem requires

matching the state under a quadratic utility. Consider Ω ⊂ R and assume that X is the convex

closure ofΩ, i.e. X = coΩ⊂R. Hence X = [a,b] for some a < b and we define the following menu:

A = {
fx ∈F : fx(ω) = x −ω, for some x ∈ X

}
. (3)

The action fx maps a state of the worldω to its distance from x. If the utility is quadratic u( fx(ω)) =
−(x −ω)2, the optimal action matches the state. Therefore, for any q ∈∆Ω (proof in Appendix A):

Eq

[
max
fx∈A

u( fx(ω))

]
=−V ar (q)

where V ar (q) = Eq [(Eq (ω)−ω)2] and

V(ν, A)−V(µ, A) = (1+γ+θ)

(∫
∆Ω

V ar (q)dµ(q)−
∫
∆Ω

V ar (q)dν(q)

)
.

If µ = δp , the uninformative experiment, V(A,ν)−V (A, p) = (1+γ+θ)
∫
∆ΩV ar (p)−V ar (q)dν(q)

and the value of information is proportional to the average variance reduction of variance between

the prior and the posteriors.

4.2 “Irrational” delegation aversion

A second application of the R&E model concerns an apparently “irrational behavior” driven by

anticipated elation. Suppose that the individual can choose between a menu A and the optimal

selection from A, namely the act f ∗
A ∈ F defined above. An interpretation is that f ∗

A represents

delegating to a a perfectly informed agent. The following proposition, which proof is immediate,

shows that the R&E model is consistent with a strict preference for A over f ∗
A :
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Proposition 3. For any A ∈A , V (A) > Ep [max f ∈A u( f )] if and only if

θ

(
max
f ∈A

Ep [u( f )]−Ep [min
f ∈A

u( f )]

)
> (1+γ)

(
Ep

[
max
f ∈A

u( f )

]
−max

f ∈A
Ep [u( f )]

)
.

Aversion to delegation cannot occur in the absence of elation θ = 0. This is consistent with the

intuition that costly regret prompts individuals to delegate decisions (Steffel and Williams, 2017).

However, anticipated elation potentially reverses this result. The simple rationale of Proposition

3 is that, although commitment to the optimal action eliminates the possibility to experience ex

post regret, it also eliminates the “thrill” of ex post elation. If the ex ante value of elation in A is

larger than the material value of committing to f ∗
A plus the reduction in the cost of regret, rejecting

delegation becomes optimal.

5 Second-period choice

The interpretation of the R&E model is that second-period choices are made before uncertainty

resolves. Therefore, the choice from a menu A consistent with such an interpretation selects the

act(s) that maximizes the expected utility f 7→ Ep [u( f )] in A:

C (A) = argmax
f ∈A

Ep [u( f )].

To verify the consistency of first- and second-period choices however, we need to observe both

the preferences over menus < and the choice from the menu. In this section, we introduce a

new primitive, a choice correspondence C : A →A such that C (A) ⊆ A representing the observed

second-period choices. The following axioms combines < and C so as to make C consistent with

the interpretation of the R&E model.

Axiom (WARP). For all A,B ∈A , if f , g ∈ A∩B, f ∈C (A) and g ∈C (B), then g ∈C (B).

WARP is a classic rationality requirement (e.g. Arrow and Fisher, 1974).

Axiom (Closed Graph). The correspondence C is upper hemicontinuous.3

3A correspondence C : M → Z between topological spaces is upper hemicontinuous at x if, for every neighborhood
U of C (x), there is a neighborhood V of x such that z ∈ V implies C (z) ⊂ U . We say C is upper hemicontinuous on
M if it is upper hemicontinuous at every point of M . Upper hemicontinuity and the fact that A ∈A is compact (and
closed) implies that the graph of C is closed (see Aliprantis and Border, 2005, Theorem 17.11).
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Closed Graph is technical property and implies that the graph of C is closed. The last axiom,

called Sophistication, is the substantive requirement as it relates first- and second-period choices.

Sophistication reflects a potential “preference for unchosen options” arising from anticipated ela-

tion. A preference for unchosen options means that

A∪ f Â A but f 6∈C (A∪ f ).

The individual has a strict preference for having f available in the first period, even if f is not

selected from A ∪ f in the second period. Thus, the value of including f in A is purely non-

instrumental. Evidence of a preference for unchosen options abounds. For instance, individu-

als buy expensive gym memberships even if they rarely exercise later on (DellaVigna and Mal-

mendier, 2006). Similarly, individuals often buy products that never use after. In the R&E model,

a preference for unchosen options derives from anticipated elation. Even if it will not be selected

from the menu, an option that generates anticipated elation is valuable in the first period. The

following axiom formalizes this intuition:

Axiom (Sophistication). For all f ∈F and A ∈A ,

A∪ f Â A =⇒ C (A) = f or ∃ω ∈Ω : g (ω) Â f (ω), ∀g ∈ A.

Either f will be selected in the second period, or there must be a stateω in which f is the worst

action, so that f increases the anticipated elation with respect to A. The next theorem is the main

result of this section:

Theorem 3. Let < be a preference with a R&E representation (u, p,γ,θ) with u unbounded above.

Then a choice correspondence C satisfies WARP, Closed Graph and Sophistication if and only if for

any A ∈A :

C (A) = argmax
f ∈A

Ep [u( f )].

Consider the “match-the-state” decision problem of Example 2. The value of the menu A is

given by

V (A) =−V ar (p)−γ(Ep [max
fx∈A

−(x −ω)2]+V ar (p))+θ(−V ar (p)−Ep [min
fx∈A

−(x −ω)2]).
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It can be seen that Ep [max fx∈A −(x −ω)2] = 0 since knowing the state allows to perfectly match it,

and Ep [min fx∈A −(x −ω)2] =−∑
ω≥ b−a

2
(a −ω)2p(ω)−∑

ω< b−a
2

(b −ω)2p(ω). Therefore,

V (A) =−V ar (p)−γV ar (p)−θ
V ar (p)+ ∑

ω≥ b−a
2

(a −ω)2p(ω)+ ∑
ω< b−a

2

(b −ω)2p(ω)

 .

The second-period choice from the menu is C (A) = f ∗
Ep [ω] where f ∗

Ep [ω](ω
′) = Ep [ω]−ω′. A prefer-

ence for unchosen options implies that V (A) >V ( f ∗) =−V ar (p), a condition that holds if

θ

 ∑
ω≥ b−a

2

(a −ω)2p(ω)+ ∑
ω< b−a

2

(b −ω)2p(ω)

> (γ+θ)V ar (p).

Although the second-period choice coincides with the prior’s mean, the individual strictly prefers

the flexibility of the whole set A if the value of anticipated elation is large enough. Clearly, if θ = 0

(no elation), the previous inequality cannot hold and V ( f ∗) ≥V (A).

Example 3 (Paying not to go to the gym). DellaVigna and Malmendier (2006) found that individu-

als often buy expensive gym memberships (monthly passes with an average price of $75) while they

would save up to $300 per year by switching to pay-per-visit passes (average price $10 per visit).

Anticipated elation is able to rationalize why people “pay not to go to the gym”. In each menu, the

monthly pass and the pay-per-visit pass, actions represent how many times the individual will visit

the gym in the following month. We denote by u(n) the utility of visiting the gym n times in a month

and we normalize u(0) = 0. The net utility of choosing n visits under the monthly pass is u(n)−P,

where P is the price of the pass (e.g. $75). The net utility of choosing n visits from the pay-per-visit

pass is u(n)−p ·n, where p < P is the price of a single visit (e.g. $10). For simplicity, we assume γ= 0

(no regret) and that uncertainty is irrelevant (e.g. there are two states of the world and in one state

all actions give zero utility). The individual anticipates that she will visit the gym n∗ times during

the following month. Choosing n∗ visits from the monthly pass menu gives utility u(n∗)−P. The

worst choice from the monthly pass menu is to make 0 visits, a choice that has utility u(0)−P =−P.

Thus, the value of a monthly pass is u(n∗)−P +θ(u(n∗)−P −(−P )) = (1+θ)u(n∗)−P. Choosing n∗

visits from the pay-per-visit menu has utility u(n∗)−p ·n∗ and we assume that 0 visits is also the

worst choice in the pay-per-visit menu. The latter choice has net utility u(0)− p ·0 = 0. Thus, the

value of the pay-per-visit pass menu is u(n∗)−p ·n∗+θ(u(n∗)−p ·n∗−0) = (1+θ)(u(n∗)−p ·n∗).
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A strict preference for the monthly pass holds if

P < (1+θ)p ·n∗.

Note that, without elation (θ = 0), the monthly pass is preferred to the pay-per-visit pass if P < p ·n∗,

which is the rational choice. With the data of DellaVigna and Malmendier (2006), 75 < 10·n∗ holds

if n∗ > 7.5. Thus, in absence of elation, only those who anticipates to visit the gym at least 8 times

will buy the monthly pass. The data in DellaVigna and Malmendier (2006) show that individuals

buying the monthly pass visit the gym an average of n∗ = 4 times during the following month. Al-

lowing for anticipated elation (θ > 0), the R&E model can rationalize the data of DellaVigna and

Malmendier (2006). Indeed, the inequality 75 < (1+θ)10 · 4 holds if θ > 7
8 and a strict preference

for the monthly pass holds even if the individual knows that she will visit the gym only 4 times.

The reason is that the larger cost of the monthly pass makes the worst action from the associated

menu (0 visits at cost P) worse than the worst action from the pay-per-visit menu (0 visits at zero

cost). Therefore, if the larger anticipated elation in the monthly pass menu compensates the lower

net utility of making n∗ visits (u(n∗)−P is smaller than u(n∗)−p ·n∗ for n∗ = 4), the monthly pass

is preferred to the pay-per-visit pass.

The literature proposed different rationalizations of a preference for having unchosen op-

tions. In the context of temptation (without objective uncertainty), Ahn, Iijima, Le Yaouanq, and

Sarver (2019) consider the preference A < C (A) as representing naivete about the strength of fu-

ture temptations. Individuals desire to include normative options because they underestimate

the future cost of resisting temptation. In the same context, Kopylov (2012) generalizes Gul and

Pesendorfer (2001) and provides a rationalization of a preference for unchosen options due to a

rational perfectionism striving. A perfectionist values including normatively optimal actions even

if she knows that they will not be selected in the second period. Differently from perfectionism,

elation makes an action f valuable if, in at least one state, f is worse than all the actions in A.

We conclude by noting that, as in Sarver (2008), by only observing second-period choices is

not possible to determine if the individual anticipates regret and/or elation. Indeed, the choice

correspondence C is generated by maximization of an expected utility, whereas models of regret

defined over Anscombe-Aumann acts generalize expected utility (e.g. Hayashi, 2008; Stoye, 2011).

This observation extends the Sarver’s intuition that identifying regret and elation could require
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choices over future opportunities (i.e. menus).

6 Related literature

The seminal papers of Bell (1982) and Loomes and Sugden (1982) introduced regret and elation

in models of choice over lotteries that generalize the expected utility model. Regret aversion can

explain the Allais’ Paradox as well as other failures of the expected utility, such as the coexistence

and gambling and insurance. Axiomatic characterizations of regret models have been proposed

by Sugden (1993); Diecidue and Somasundaram (2017); Fishburn (1989); Quiggin (1994), and re-

cently by Lanzani (2019), using revealed preferences over lotteries and by Hayashi (2008); Stoye

(2011) using preferences over Anscombe-Aumann’s acts. The present work takes a different ap-

proach and studies choices over menus of acts in the spirit of Sarver (2008), but in a different

framework. In Sarver (2008)’s model, the primitive is a revealed preference over menus of lotter-

ies and the decision maker is uncertain about her future tastes (as in Kreps, 1979; Dekel, Lipman,

and Rustichini, 2001). Similarly to our interpretation, the choice from the menu occurs before the

resolution of the subjective uncertainty and the individual experiences regret if she realizes that

a better choice was available. In the Sarver (2008)’s approach uncertainty is endogenous and not

part of the description of the problem, this makes the separate identification of regret and elation

difficult. Our primitive is a preference over menus of Anscombe-Aumann’s acts, hence uncer-

tainty is exogenous even if the prior is subjective. Our richer setting allows us to identify both ela-

tion and regret from revealed preferences. In particular, in a setting with endogenous uncertainty

axioms such as Conditional Dominance and Conditional Flexibility cannot be defined. An inter-

esting open question is how to identify elation (and regret) in the context of choice over menus à la

Dekel et al. (2001), hence extending the work of Sarver (2008). The present paper shares the primi-

tive, choices over menus of acts, with models of information acquisition (Dillenberger et al., 2014;

Oliveira et al., 2017). In these models, flexibility is always valuable because information arrives

before the second-period choice. Moreover, the second-period choice is random as it depends on

the realized posterior. In our model, the second-period choice is deterministic as it maximizes

a subjective expected utility. In a slightly different context, Epstein (2006) provided a model of

choice over menus of acts that features a preference for commitment. In particular, his model sat-

isfies Set-Betweenness (if A < B , then A < A ∪B < B). In the Epstein (2006) model, commitment
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is valuable to a sophisticated subject who anticipates her non-Bayesian reaction to information.

Our model violates Set-Betweenness, for example, with the payoffs of Table 1, a < b but is possible

that a < b Â a ∪b (if 1 < γ4−θ5). Thus, the two models are behaviorally distinguishable
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A Proofs

Proof of Theorem 1. The restriction to F of < satisfies Weak Order, Continuity, Singleton Mono-

tonicity and Independence. Since F is a convex subset of a vector space, by the Anscombe-

Aumann theorem, this is equivalen to the existence of an affine and cardinally unique function

u : X →R and a probability p ∈∆Ω such that f 7→ Ep [u( f )] represents the restriction of< to single-

ton menus, i.e. f < g if and only i f Ep [u( f )] ≥ Ep [u(g )]. Since< satisfies Weak Order and Indepen-

dence (and the state-space is finite), a proof similar to that of Lemma S6 part two in the Supple-

mentary Appendix of Dekel, Lipman, Rustichini, and Sarver (2007), shows that < satisfies Indiffer-

ence to Randomization, i.e. for all A ∈A , A ∼ co A where co A is the convex hull of A. Indifference

to Randomization allows us to restrict our attention to the family of convex menus in A , that we

denote by A c . The latter family is a mixture space. Therefore, the axioms Weak Order, Continu-

ity and Independence and an application of the Mixture Space Theorem of Herstein and Milnor

(1953) are equivalent to the existence of an affine representation of <, that is a function V : A →R

such that V (A) ≥ V (B) if and only if A < B and such that V (αA + (1−α)B) =αV (A)+ (1−α)V (B)

for all α ∈ [0,1] and all A,B ∈ A c . By the uniqueness of the subjective expected utility represen-

tation, the restriction to F of V , must be an affine transformation of Ep [u( f )], so we can renor-

malize, if necessary, u such that V ( f ) = Ep [u( f )]. W.l.o.g. let assume that [0,1] ⊆ u(X ). Now

define V0,V ∗,V∗ : A c → R as follows: V0(A) = max f ∈A Ep [u( f )], V ∗(A) = Ep [max f ∈A u( f (ω))] and

V∗(A) = Ep [min f ∈A u( f (ω))] = −Ep [max f ∈A −u( f (ω))]. The three functionals V0,V ∗,V∗ are affine

on A c and non-constant. Suppose now that for A,B ∈ A , V0(A) = V0(B), V ∗(A) = V ∗(B) and

V∗(A) = V∗(B), the Consistency axiom implies V (A) = V (B). Therefore, Theorem 2 in Fishburn

(1984) implies the existence ofα1,α2,α3,α4 ∈R such that V (A) =α1V0(A)+α2V ∗(A)+α3V∗(A)+α4

for all A ∈ A c . By definition, V (x) = u(x) = α1u(x)+α2u(x)+α3u(x)+α4 for all x ∈ X , that im-

plies α1 +α2 +α3 = 1 and α4 = 0. Therefore, V (A) = (1−α2 −α3)V0(A)+α2V ∗(A)+α3V∗(A) for

all A ∈ A c . Suppose that f < g , f ∈ A and for each ω ∈ Ω, there is hω ∈ A with g (ω) < hω(ω).

Axiom Conditional Dominance implies V (A) ≥ V (A ∪ g ). Since f ∈ A, V0(A) = V0(A ∪ g ). More-

over, V∗(A) =V∗(A∪ g ) since for each ω ∈Ω, there is hω ∈ A with g (ω) < hω(ω). Therefore, V (A) =
(1−α2−α3)V∗(A)+α2V ∗(A)+α3V∗(A) ≥V (A∪g ) = (1−α2−α3)V0(A∪g )+α2V ∗(A∪g )+α3V∗(A∪
g ) = (1−α2−α3)V0(A)+α2V ∗(A∪g )+α3V∗(A) impliesα2V ∗(A) ≥α2V ∗(A∪g ). Since V ∗ is mono-

tone with respect to set inclusion V ∗(A ∪ g ) ≥ V ∗(A), the inequality γV ∗(A) ≥ γV ∗(A ∪ g ) holds
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only if α2 ≤ 0. Suppose that f < g , f ∈ A and for each ω ∈Ω, there is hω ∈ A with hω(ω) < g (ω).

Axiom Conditional Flexibility implies V (A ∪ g ) ≥ V (A). Since f ∈ A, V0(A) = V0(A ∪ g ). More-

over, V ∗(A) = V ∗(A ∪ g ) since, for each ω ∈ Ω, there is hω ∈ A with hω(ω) < g (ω). Therefore,

V (A) = (1−α2−α3)V∗(A)+α2V ∗(A)+α3V∗(A) ≤V (A∪g ) = (1−α2−α3)V0(A∪g )+α2V ∗(A∪g )+
α3V∗(A∪g ) = (1−α2−α3)V0(A)+α2V ∗(A)+α3V∗(A) impliesα3V∗(A) ≥α3V∗(A∪g ). Since V∗ is an-

timonotone with respect to set inclusion V∗(A∪g ) ≤V∗(A), the inequality α3V ∗(A) ≤α3V∗(A∪g )

holds only if α3 ≤ 0. To extend V : A c → R to the whole A , we exploit indifference to random-

ization. Indeed, A ∼ co A for all A ∈ A , hence we can define V (A) = V (co A) for any A ∈ A . The

extension is well-defined since A ∼ B and indifference to randomization imply co A ∼ A ∼ B ∼ coB ,

hence V (A) =V (B). Lastly, defining γ=−α2 and θ =−α3 concludes the proof.

Proof of Proposition 1. Since V : A c → R is affine with respect to mixtures of menus, the unique-

ness part of the Mixture Space Theorem of Herstein and Milnor (1953) ensures that V ′ = αV +β
for some α > 0 and β = 0. This also implies u′ = αu +β. By the uniqueness property of the Sub-

jective expected utility representation p = p ′. Consider A = x ∪ y with x Â y (they exist by non-

triviality of<). Then θ′ = V ′(x∪y)−u′(x)
u′(x)−u′(y) = αV (x∪y)−αu(x)

αu(x)−αu(y) = V (x∪y)−u(x)
u(x)−u(y) = θ. Since< is non-degenerate,

there is a measurable E ⊆ Ω such that p(E) ∈ (0,1). Take x Â y , and consider A = xE y ∪ yE x.

Then f ∗
A = x Â xE y and x Â yE x, therefore, V ∗(A) > V0(A). Then γ′ = V ′

0(A)−V ′(A)−θ′(V ′
0(A)−V ′∗(A))

V ′∗(A)−V ′
0(A) =

αV0(A)−αV (A)−αθ(αV0(A)−αV∗(A))
αV ∗(A)−αV0(A) = γ.

Proof of Corollary 1. A preference < represented by a R&E model with γ= 0 clearly satisfies Pref-

erence for Flexibility. For sufficiency, take x Â y (they exist by non-triviality). Since < is non-

degenerate, there is E ⊆Ω such that 0 < p(E) < 1. Let define an act f = xE y , where xE y denotes an

act that pays x ifω ∈ E and y otherwise. Consider now f ∼ x f (it exists by Lemma 1) and x ∈ X with

f (ω)< x for allω ∈Ω. Let defineΩ f =
{
ω ∈Ω : f (ω) Â x f

}
(it is nonempty, since f is non-constant).

Then, Preference for Flexibility implies V ( f ∪ x ∪ x f ) = u(x f )−γ
(∑

ω∈Ω f
p(ω)u( f (ω))−u(x f )

)
+

θ(u(x f )−u(x)) ≥ u(x)+θ(u(x f )−u(x)) =V (x ∪x f ) that implies γ≤ 0, hence γ= 0.

Proof of Corollary 2. Necessity is straightforward. For sufficiency, take x Â y (they exist by non-

triviality). Suppose that Dominance holds and θ > 0. Then V (x) > V (y) and Dominance implies

V (x) ≥V (x ∪ y) = u(x)+θ(u(x)−u(y)) >V (x) a contradiction. Hence, θ = 0.
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Proof of Corollary 3. Necessity is straightforward. For sufficiency, take x Â y (they exist by non-

triviality). Suppose that Strategic Rationality holds and θ > 0. Then V (x) > V (y) and Strategic

Rationality imply V (x) =V (x∪y) = u(x)+θ(u(x)−u(y)) >V (x) a contradiction. Hence, θ = 0. Since

< is non-degenerate, there is E ⊆Ω such that 0 < p(E) < 1. Let define f = xE y and consider f ∼ x f

(it exists by Lemma 1) and x ∈ X with f (ω)< x for all ω ∈Ω. Let defineΩ f =
{
ω ∈Ω : f (ω) Â x f

}
(it

is nonempty, since f is non-constant). Then, Strategic rationality implies V ( f ∪ x ∪ x f ) = u(x f )−
γ

(∑
ω∈Ω f

p(ω)u( f (ω))−u(x f )
)
+θ(u(x f )−u(x)) = u(x)+θ(u(x f )−u(x)) = V (x ∪ x f ) that implies

γ= 0.

Proof of Theorem 2. For Necessity, we can renormalize u j to be equal to ui . Since p j = pi , the

functionals V i
0 ,V ∗i and V i∗ are equal to the functionals V j

0 ,V ∗ j and V j
∗ , respectively, and we can

denote them by V0,V ∗,V∗. The conditions γ j = κγi and θ j = κθi for some κ ∈ [0,1] allow us

to rewrite V j (A) = κV0(A) + (1 −κ)V i (A). Suppose that A <i
0 B and A <i , then it follows that

V j (A) = κV0(A)+ (1−κ)V i (A) ≥ κV0(B)+ (1−κ)V i (B) =V j (B), hence < j is less regret and elation

prone than <i . For sufficiency, given f , g ∈ F , f <i
0 g implies f <i g , and since < j is LREP than

<i , then f < j g . This means that the restrictions of <i and < j to singletons are equivalent. By the

uniqueness properties of the subjective expected utility model, ui and u j are cardinally equiva-

lent and pi = p j . Then, (<i
0,<∗i ,<i∗) and (< j

0,<∗ j ,< j
∗) are represented (after renormalization if

necessary) by the same functionals that we denote by V0,V∗,V ∗, respectively. By the LREP condi-

tion and Theorem 2 in Fishburn (1984). V j (A) =αV0(A)+βV i (A)+δ for some α,β≥ 0 and δ ∈ R.

Since V j ( f ) = Ep [u( f )] =αV0( f )+βV i ( f )+δ=αEp [u( f )]+βEp [u( f )]+δ, it follows that α+β= 1

and δ= 0. Rearranging yields V j (A) = V0(A)− (1−α)γi (V ∗(A)−V0(A))+ (1−α)θi (V0(A)−V∗(A)),

hence the conclusion follows by defining κ= 1−α.

Proof of Propositon 2. The proof follows from rewriting, for a given posterior q ∈ ∆Ω, the R&E

model as

V (A, q) = (1+γ+θ)max
f ∈A

Eq [u( f )]−γEq [max
f ∈A

u( f (ω))]−θEq [min
f ∈A

u( f (ω))].
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Then, after defining κ= 1+γ+θ:

V(ν, A) = κ
∫
∆Ω

max
f ∈A

Eq [u( f )]dν(q)−γ
∫
∆Ω
Eq [max

f ∈A
u( f (ω))]dν(q)−θ

∫
∆Ω
Eq [min

g∈A
u(g (ω))]dν(q)

=κ
∫
∆Ω

max
f ∈A

Eq [u( f )]dν(q)−γEp [max
f ∈A

u( f (ω))]−θEp [min
g∈A

u(g (ω))]

≥κ
∫
∆Ω

max
f ∈A

Eq [u( f )]dµ(q)−γEp [max
f ∈A

u( f (ω))]−θEp [min
g∈A

u(g (ω))]

=κ
∫
∆Ω

max
f ∈A

Eq [u( f )]dµ(q)−γ
∫
∆Ω
Eq [max

f ∈A
u( f (ω))]dµ(q)−θ

∫
∆Ω
Eq [min

g∈A
u(g (ω))]dµ(q) =V(µ, A)

where the second equality follows from the Bayesian consistency condition of ν (i.e. ν ∈ Γ(p)), the

inequality follows from νD µ and the convexity of q 7→ max f ∈A Eq [u( f )], the third equality from

the Bayesian consistency of µ.

Proof of the results in Example 1. For a belief q in the interior of ∆Ω⊂R|Ω|
+ , the individual solves

max
c∈A

∑
ω∈Ω

q(ω) ln(c(ω))−λ
( ∑
ω∈Ω

πωc(ω)−W

)
.

The first order conditions are q(ω) 1
c(ω) =λπω, clearly λ> 0 hence the constraint is binding. There-

fore, q(ω) =πωλc(ω). Summing overΩ, 1 =∑
ω∈Ω q(ω) =λ∑

ω∈Ωπωc(ω) =λW . Then, λ=W −1. By

the FOC, c∗ω =W q(ω)
πω

. Substituting gives
∑
ω∈Ω q(ω) ln

(
q(ω)
πω

)
+ ln(W ). Therefore, maxc∈A Eq [ln(c)] =

−H(q)−Eq [ln(πω)]+ ln(W ). For the second part, let denote by κ= 1+γ+θ, then

V(ν, A)−V(µ, A) =κ
∫
∆Ω

max
c∈A

Eq [ln(c)]dν(q)−γ
∫
∆Ω
Eq [max

c∈A
ln(c)]dν(q)−θ

∫
∆Ω
Eq [min

c∈A
ln(c)]dν(q)

−κ
∫
∆Ω

max
c∈A

Eq [ln(c)]dµ(q)−γ
∫
∆Ω
Eq [max

c∈A
ln(c)]dµ(q)−θ

∫
∆Ω
Eq [min

c∈A
ln(c)]dµ(q)

=κ
(∫
∆Ω

max
c∈A

Eq [u(c)]dν(q)−
∫
∆Ω

max
c∈A

Eq [u(c)]dµ(q)

)
=κ

(∫
∆Ω

−H(q)−Eq [ln(πω)]+ ln(W )dν(q)−
∫
∆Ω

−H(q)−Eq [ln(πω)]+ ln(W )dµ(q)

)
=κ

(∫
∆Ω

H(q)dµ(q)−
∫
∆Ω

H(q)dν(q)

)

where the first equality follows by definition, the second equality by the Bayesian consistency of

µ and ν with p (i.e. µ,ν ∈ Γ(p)), the third equality by the result above and the last equality again

by the Bayesian consistency of µ and ν that allows to cancel the terms −Ep [ln(πω)] in the two
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integrals.

Proof of the results in Example 2. Given Eq
[
max fx∈A −(x −ω)2

]
, the FOCs imply that the maximum

is attained at x = Eq [ω], it follows that

max
fx∈A

Eq [−(x −ω)2] = Eq [−(Eq [ω]−ω)2] =−V ar (q)

For the second part, let denote by κ= 1+γ+θ, then

V(ν, A)−V(µ, A) =κ
∫
∆Ω

max
fx∈A

Eq [u( fx)]dν(q)−γ
∫
∆Ω
Eq [max

fx∈A
u( fx)]dν(q)−θ

∫
∆Ω
Eq [min

fx∈A
u( fx)]dν(q)

−κ
∫
∆Ω

max
fx∈A

Eq [u( fx)]dµ(q)−γ
∫
∆Ω
Eq [max

fx∈A
u( fx)]dµ(q)−θ

∫
∆Ω
Eq [min

fx∈A
u( fx)]dµ(q)

=κ
(∫
∆Ω

max
fx∈A

Eq [u( fx)]dν(q)−
∫
∆Ω

max
fx∈A

Eq [u( fx)]dµ(q)

)
=κ

(∫
∆Ω

−V ar (q)dν(q)−
∫
∆Ω

−V ar (q)dµ(q)

)
=κ

(∫
∆Ω

V ar (q)dµ(q)−
∫
∆Ω

V ar (q)dν(q)

)

where the first equality follows by definition, the second equality by the Bayesian consistency of

µ and ν with p (i.e. µ,ν ∈ Γ(p)), the third equality by the result above and the last equality by

rearranging terms.

Proof of Theorem 3. Necessity is straightforward. For sufficiency, suppose that f ∈ A is such that

Ep [u( f )] ≥ Ep [u(g )] for all g ∈ A. Take the lowest payoff of f on a non-null state, namely x = f (ω)

such that p(ω) > 0 and f (ω′) Â f (ω) for all ω′ ∈ Ω \ω with p(ω′) > 0. Now define f ′
ε ∈ F to be

f ′
ε (ω′) = f (ω′) for all ω′ ∈ Ω \ω and f ′

ε (ω) is such that u( f ′
ε (ω)) = u( f (ω))+ ε

p(ω) for ε > 0 small

enough. By continuity of u the act f ′
ε is well-defined (if f = x ∈ X , the fact that u is unbounded

above implies the existence of x ′ such that u(x ′) = u(x)+ ε). Clearly, Ep [u( f ′
ε )] > Ep [( f )]. More-

over, A∪ f ′
ε Â A, indeed, V (A∪ f ′

ε ) = Ep [u( f ′
ε )]−γ[Ep [maxh∈A∪ f ′

ε
u(h(ω))]−Ep [u( f ′

ε )]]+θ[Ep [u( f ′
ε )]−

Ep [minh∈A∪ f ′
ε

u(h(ω))]]. By definition, R(A∪ f ′
ε , p) ≤ R(A, p), because either h(ω)< f ′

ε (ω) for some
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h ∈ A or f ′
ε (ω) Â h(ω) for all h ∈ A. The former case implies R(A∪ f ′

ε , p) ≤ R(A, p). In the latter case:

R(A∪ f ′
ε , p) = ∑

ω′∈Ω\ω

p(ω′) max
h∈A∪ f ′

ε

u(h(ω))+p(ω)[u( f (ω))]+ε−Ep [u( f ′
ε )

= ∑
ω′∈Ω\ω

p(ω′)max
h∈A

u(h(ω))+p(ω)[u( f (ω))]+ε−Ep [u( f )]−ε

=R(A, p).

Therefore, V (A ∪ f ′
ε ) >V (A), moreover for no ω ∈Ω and no g ∈ A, g (ω) Â f ′

ε (ω). By Sophistication

f ′
ε = C (A ∪ f ′

ε ). Letting ε→ 0, Closed Graph implies f ∈ C (A). Now take Ep [u(g )] < Ep [u( f )] and

consider h ∈ F such that g ≺ h ≺ f . Let define g ′ in a similar way we defined f ′ given f and

such that f < g ′ and consider B = {
g , g ′}. Then V (B) > V (g ) and for no ω ∈ Ω, g (ω) Â g ′(ω),

by Sophistication C (B) = g ′. Now define A′ = A ∪ g ′ and note that f ∈ argmaxh∈A′ Ep [u(h)], that

implies f ∈C (A′). Suppose that g ∈C (A), by WARP, g ∈C (A′), since f ∈C (A′)∩A and also g ∈C (B)

since g ′ ∈C (A′)∩B , a contradiction to the fact that C (A′) = g ′. Therefore, g 6∈C (A).
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