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Abstract

We study a dynamic portfolio optimization problem where it is possible
to invest in a risk-free bond, in a risky stock modeled by a lognormal
di¤usion and in call options written on the stock. The use of the options
is limited to static strategies at the beginning of the investment period.
The investor faces transaction costs with a �xed component and solvency
constraints and the objective is to maximize the expected utility of the
�nal wealth. We characterize the value function as a constrained viscosity
solution of the associated quasi-variational inequality and we prove the
local uniform convergence of a Markov chain approximation scheme to
compute numerically the optimal solution. Because of transaction costs
and solvency constraints the options cannot be pefectly replicated and
despite the restriction to static policies our numerical results show that in
most cases the investor will keep a signi�cant part of his portfolio invested
in options.

1 Introduction

The original formulation of option pricing theory by Black and Scholes [4]
has a paradoxical consequence: options, and more general contingent claims,
are redundant assets because they can be perfectly replicated. If markets are
arbitrage-free, options prices are determined by the cost of the replicating port-
folios and apparently options markets have no reason to exist because investors
can trade the hedging portfolios instead of the options. However perfect hedging
is impossible in real markets and options are not redundant assets. This para-
doxical consequence depends on the completeness property of the Black-Scholes
market model, that is any contingent claim admits a self-�nancing replicating
strategy. It is su¢ cient to introduce the jump processes to describe the evo-
lution of the stock prices that the completeness of the market model is lost,
not all risk can be hedged away and the notion of pricing by replication is no
longer valid (see [8], part III). The most basic fact which does not allow perfect
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hedging is that the continuous trading necessary to replicate an option is im-
possible in the presence of market frictions, in particular of transaction costs.
The literature on option pricing and hedging under transaction costs is vast. To
avoid prohibitively expensive trading costs many articles formulate the hedging
problem in discrete time, allowing for portfolio rebalancing only at �xed time in-
tervals (see [18], [5], [3], [13]). However as the revision interval becomes shorter,
decreasing the hedging error, the price of a replicating, or super-replicating port-
folio, increases steadily, revealing an unavoidable trade-o¤ between the hedging
error and the transaction costs incurred to reduce this error. This trade-o¤ is
particularly evident if we consider a �xed component in the trading costs. But
even with only proportional transaction costs it has been shown in [24] that in
the continuous time limit the cheapest way to super-replicate a European call
option is the trivial strategy of buying and holding one share of the underlying,
giving the largest possible upper bound for the option price. To balance the
risk against the costs of replication an utility indi¤erence approach has been
proposed. The indi¤erence, or reservation, buying price is de�ned as the price
to pay which makes the investor indi¤erent to buy or not the option when he
solves a portfolio optimization problem (see for this approach [15], [12], [6], [9],
[21], [25]). There is a symmetrical de�nition for the indi¤erence, or reservation,
selling price and the two unit indi¤erence prices turn out to be di¤erent. We
want to stress here that reservation prices are subjective and not market prices
for options. The reservation buying or selling price depends on the choice of the
utility function and within a class of utility functions varies greatly by changing
the risk-aversion parameter (see, for instance, [9], [21], [25]). Moreover indi¤er-
ence pricing leads to subjective nonlinear pricing rules where the unit buying
or selling price depends on how many options the investor decides to buy or
sell. More importantly indi¤erence prices (also the marginal ones) depend on
the initial position of the investor. It has been argued that the buying price is
always below the writing price (see on this point [12], [9]) but this result is valid
only for a given utility function, risk aversion and initial endowment. Even if we
use the exponential utility (when the reservation prices do not depend on the
initial cash) it is not di¢ cult to build an example where the writing price of one
investor is less than the buying price of another investor, because of di¤erent
initial endowments in stocks. This fact has a nice implication: there certainly
are situations where a buyer and a writer with di¤erent holdings can agree on
a common price to trade an option.
In this paper we follow the utility based approach but we look at the absence

of market completeness due to transaction costs from a di¤erent perspective.
Since perfect replication of options is not possible, and super-replication too
expensive, we intend to investigate if it is pro�table to use options as a speci�c
asset class in a portfolio optimization problem. As a �rst step in this direction
we consider a simpli�ed setting. Our agent invests only in three �nancial assets,
a risky security, which we also call the stock, a risk-free asset, which we refer
to as the bond and a call option with underlying asset the risky security. We
model the price evolution of the risky security by a lognormal di¤usion while
the risk free asset grows at at a �xed continously compounded rate. The objec-
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tive is to maximize the expected utility from the portfolio liquidation at a given
�nal horizon. This simpli�ed setting can describe a passive investment strategy
where an agent invests in an index fund, or ETF, tracking a broad market index,
in a money instrument, such as Treasury Bills, and in call options written on
the market index. We are considering a small investor whose trading has no
in�uence on market prices and who pays signi�cant transaction costs whenever
he trades. Moreover his overall �nancial position is subject to solvency con-
straints such as the margin requirements required by brokers and exchanges to
shortsell securities, buy on margin and write options. The transaction costs are
assumed of a �xed plus proportional type and we formulate the portfolio model
as an impulse control problem. Most of the literature considers only propor-
tional transaction costs because this assumption sempli�es the analysis (see, for
instance, [11], [23], [19]). However considering only proportional costs leads to
singular control problems where the trading policies have a rather unrealistic
nature. The optimal strategy is to make the minimal e¤ort, in terms of transac-
tions, to maintain the portfolio inside a no-trading region. When the portfolio
reaches the boundary of this region the investor trades continuously making an
in�nite number of in�nitesimally small transactions to prevent the portfolio to
cross the borders. This kind of policy, which is a local time process, is not a
feasible one in the real world. Fixed transaction costs and impulse control lead
to more realistic policies where the investor intervenes a �nite number of times
in any time interval, trading a �nite amount of the assets.
We will limit the use of options to static policies: the investor buys or

writes the call options, with maturity the �nal horizon, at the beginning of
his investment period and hold them until expiration. This limitation has the
advantage that it is not necessary to specify the dynamics of the option price to
solve our problem, we need only to know its initial price. Despite this restriction
the main result of this paper is to show that a static use of options is pro�table
in portfolio optimization even if we do not have a theory of the market prices of
options. In fact, we will show numerically that the only presence of transaction
costs induces in most cases our agent to keep a signi�cant part of his portfolio
invested in a long, or in a short, position in these securities. The size and the
sign of the investment will depend on the investor�s initial holdings, his risk
aversion and the initial price of the option. It is convenient to use options also
if the initial price is equal to the Black and Scholes price. The reason lies in the
form of the optimal strategy without transaction costs: the so-called Merton�s
problem. In this model the agent trades continuously in order to keep constant
the fraction of wealth invested in the di¤erent assets. The presence of even small
transaction costs has a deep impact in this kind of policy reducing strongly the
frequency of trading and transforming it to an almost "buy and hold" trading
strategy (see [19], [1]). Options can mitigate this e¤ect. If the agent starts with
a large fraction of wealth invested in cash it is better to buy options rather than
stocks, and viceversa it is more pro�table to sell options rather than stocks if the
initial wealth is mainly in stocks. These derivatives can be pro�tably used as
substitutes of the underlying stock reducing the transaction costs in a leveraged
way and improving the e¢ ciency of the optimal policy. Of course if the initial
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price is not aligned with the Black and Scholes price the investor will also use
options to exploit the di¤erence in prices. However the unit reservation buying
(selling) price will decrease (increase) with the number of traded options. It will
not be possible to build a deterministic arbitrage because the transaction costs
introduce an unavoidable element of risk in the �nal position making perfect
hedging impossible.
The paper is organized as follows. In section 2 we give a precise formula-

tion of our portfolio model as a parabolic impulse control problem with state
constraints. We propose a solution method using the dynamic programming
approach by considering the auxiliary problem where the initial number of op-
tions is di¤erent from zero but it is not possible to trade the options. The
rest of the paper focuses on the value function V of this auxiliary problem
because the optimal solution of our model is derived by solving a static opti-
mization problem on the values assumed by V at the initial time. In section
3 we characterize V as the unique constrained viscosity solution of the asso-
ciated Hamilton-Jacobi-Bellman quasi-variational inequality verifying certain
boundary conditions. Moreover we describe in a formal way the optimal pol-
icy which has the typical iterative structure of impulse control problems. In
section 4 we propose a Markov chain approximation method to solve numeri-
cally the Hamilton-Jacobi-Bellman quasi-variational inequality. We present a
discrete time dynamic programming scheme for the controlled Markov chain
approximating the di¤usion, which can be solved backwards in time from the
�nal condition. The main result of this section is to show the local uniform
convergence of the solution of this approximation scheme to the value function
of the continuous problem. Section 5 presents some numerical results of our
numerical procedure for investors whose preferences are modeled by a power
utility function which has a constant relative risk aversion index. We show the
form of the optimal control when a long or short position in options is present
in the portfolio. Moreover we focus on how the investment in options depends
on the investor initial holdings in bonds and stocks and how it varies with the
strikes prices of the options for a given initial stock price. A case where the call
price is not aligned with the Black and Scholes price is also considered. Finally
section 6 concludes the paper with some �nal remarks and suggestions for future
research.

2 The model

We describe the dynamics of the price P of the risky security by the lognormal
di¤usion

dP (t) = �P (t)dt+ �P (t)dW (t) (1)

where Wt is a Wiener process on the �ltered probability space (
; F; P;Ft) and
Ft is the P -augmentation to the natural �ltration generated by Wt. Let � and
� denote respectively the number of stocks and the number of call options and
B the amount of money invested in the risk-free asset. Without control B grows
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at a �xed instantaneous rate r

dB(t) = rB(t)dt:

The initial portfolio at t = 0�, that is before any intervention, is denoted by
�0 = (B0; �0; �0). At any time the investor can buy (� > 0) or sell (� < 0) the
number � 2 R of stocks, reducing (or increasing) correspondingly the investment
in the risk-free asset. Moreover, but only at t = 0, the investor can decide to
buy (� > 0) or sell (� < 0) the number � 2 R of call options, with underlying
asset the risky security and strike price Pstr. Let P c < P0 be the given market
price of a call option at t = 0. To buy or sell the risky securities (stocks or
options) it is necessary to pay transaction costs which are drawn immediately
from the risk-free asset. We assume these costs of a �xed plus proportional type

C(x; P ) = K + c jxjP K > 0; 0 � c < 1

where x is the number of securities bought (x > 0) or sold ( x < 0) and P is
their unit price. A portfolio control policy p = f(�; �0); (� i; �i)g ; i = 1; 2; � � � ;
is made of a couple (�; �0), representing the �rst transactions in options and
stocks at t = 0, and a sequence of stopping times � i and corresponding random
variables �i, which represent the subsequent number of stocks bought (or sold)
at the stopping times � i. We denote by �B0, ��0, ��0 the values of B; �, � after
the initial transactions (�; �0)������

�B0 = B0 � �0P0 � C(�0; P0)� �P c � C(�; P c)
��0 = �0 + �0
��0 = �0 + � :

(2)

A policy p is said to be feasible if it veri�es the following conditions (i � 1):8>><>>:
� i is a Ft stopping time
0 � � i � � i+1 8i
limi!+1 � i = +1 almost surely
�i is F� i measurable .

The dynamics of the portfolio �p(t) = (Bp(t); �p(t); �p(t)); controlled by policy
p; is given by the constant number of options �p = �0+ �, and by the following
set of stochastic di¤erential equations:�

dB0(t) = rB0(t)dt , B0(0) = �B0
d�0(t) = 0 , �0(0) = ��0

for t 2 [0; �1]

and 8i � 18>><>>:
dBi(t) = rBi(t)dt
Bi(� i) = B

i�1(� i)� �iP (� i)� C(�i; P (� i))
d�i(t) = 0
�i(� i) = �

i�1(� i) + �i .

for t 2 [� i; � i+1]
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When � i < � i+1 we set (Bp(t); �p(t)) = (Bi(t); �i(t)) for t 2 [� i , � i+1) and if,
for instance, � i�1 < � i = � i+1 = ::: = � i+n < � i+n+1, then we set�

(Bp(��i+n); �
p(��i+n)) = (B

i�1(� i); �
i�1(� i))

(Bp(� i+n); �
p(� i+n)) = (B

i+n(� i+n); �
i+n(� i+n))

where (Bp(��i+n); �
p(��i+n)) are the left limits at � i = ::: = � i+n: The resulting

process �p(t) is cadlag and adapted to the �ltration Ft. Besides the transaction
costs our investor must face solvency constraints on his overall �nancial posi-
tion that correspond to the margin requirements required by brokers to buy on
margin, shortsell securities and trade options. We denote by

L(�; P ) =

�
max f�P � C(�; P ); 0g if � � 0
�P � C(�; P ) if � < 0

the liquidation value of � stocks, which is set to zero if selling a long position
in stocks is not su¢ cient to cover the �xed cost K. The solvency level of the
portfolio (B;�; �), when the stock price is P , is de�ned by

Sol(B;�; �; P ) = B + L(�� (
j�j+ K

P

1� c )1�<0; P )

wher 1 is the indicator function. We will require that Sol(B;�; �; P ) � 0.
Note that the options in�uence the portfolio solvency level only if the agent

writes them. As shown in [24] in the presence of transaction costs the cheapest
super replicating startegy of a long position in one option is to buy one unit of
the underlying. When � < 0 the condition Sol(B;�; �; P ) � 0 means that at
any time the portfolio�s liquidation value must stay positive after allowing the
investor with a short position to perform the cheapest super replicating strategy.
Since we assume cash settlement of the options, taking account of the transaction

costs it is necessary to buy j�j+K
P

1�c units of stocks because L( j�j+
K
P

1�c ; P ) = j�jP .
On the contrary the cheapest way to super replicate a short position of one
option is simply to invest nothing and thus a long position in the options has
no impact on the portfolio�s solvency level (see on this point [9]). Therefore to
satisfy these solvency constraints the agent�s portfolio � = (B;�; �) must verify
(�; P ) 2 SOL where SOL � R4 is the closed solvency region

SOL �
�
(B;�; �; P ) 2 R3 � R+ : Sol(B;�; �; P ) � 0

	
:

The initial portfolio �0 is supposed to satisfy this condition. We call a fea-
sible policy p admissible if (Bp(t); �p(t); �p; P (t)) 2 SOL, 8t 2 [0; T ] and we
denote by A0(�0; P0; P c) the set of admissible policies given the initial condi-
tion (�0; P0; P c). The agent�s preferences are described by an utility function
U : R+ ! R+ with U(0) = 0: We assume that U is continuous, increasing and
that it satis�es for some C > 0 and 0 < 
 < 1 the sublinear growth

U(L) � CL
 :
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The investor�s objective is to maximize the expected utility of the liquidation
value of his portfolio at the �xed terminal horizon T:
Assuming cash settlement of the options, without additional costs, the liquida-
tion value LT of a �nal portfolio (B;�; �) is given by

LT (B;�; �; P ) = B + L(�; P ) + � � (P � Pstr)+:

Note that we certainly have LT (Bp(T ); �p(T ); �
p; P (T )) � 0 if p is admissible.

The payo¤ functional Jp associated to policy p is therefore

Jp = E�0;P0;P c [U(LT (B
p(T ); �p(T ); �p; P (T )))] .

Our problem is to �nd M and, if it exists p�, such that

M = sup
p2A0(�0;P0;P c)

Jp = Jp
�

We will solve this problem by using the dynamic programming methodology.
Let F0(�0; P0; P c) � R2 be the set of the �rst two interventions at t = 0 that
are admissible

F0(B0; �0; �0; P0; P
c) =

�
(�0; �) 2 R2 : ( �B0; ��0; ��0; P0) 2 SOL

	
where �B0; ��0; ��0 are de�ned in (2). Since, for given values B0; �0; �0; P0; P

c;

the variables �B0; ��0; ��0, L(��0 � (
j��0j+K

P

1�c )1��0<0; P0) and Sol(
�B0; ��0; ��0; P0) are

upper semicontinuous functions of (�; �0) it follows that F0(�0; P0; P
c) is a closed

subset of R2. Moreover it is also bounded, because of the variable part of the
transaction costs, and consequently compact. Now, we consider the auxiliary
problem where the process starts in t 2 [0; T ], with the initial number of options
�t in the portfolio but it is not possible to trade the options, that is �s = �t,
8s 2 [t; T ]. For this problem a policy ~p is made only of a sequence (� i; �i),
i = 1; 2; � � � , representing the number of stocks bought (or sold) at the stopping
times � i � t. One such policy is admissible if (Bs; �s; �t; Ps) 2 SOL, 8s 2 [t; T ].
We set �Q � [0:T ] � SOL and we denote by A(t; B; �; �; P ) the set of these
admissible policies when the system starts in (t; B; �; �; P ) 2 �Q. We de�ne the
value function V : �Q! R by

V (t; B; �; �; P ) = sup
~p2A(t;B;�;�;P )

J ~p(t; B; �; �; P )

where

J �p(t; B; �; �; P ) = Et;B;�;�;P [U(LT (B
�p(T ); ��p(T ); �; P (T )))] .

Considering the �rst interventions (�; �0) at t = 0 we have clearly

M = sup
p2A0(�0;P0;P c)

Jp = sup
(�;�0)2F0(�0;P0;P c)

V (0; �B0; ��0; ��0; P0) . (3)
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Moreover if V is upper semicontinuous in SOL, then an optimal (��; ��0) certainly
exists because F0(�0; P0; P c) is compact and then it follows

M = V (0; �B�0 ; ��
�
0;
��
�
0; P0) .

Therefore in the sequel we will focus our attention on the value function V asM
can be derived by V by considering a static optimization problem. We assume
that V veri�es the following dynamic programming principle (see [24] chapter
�ve, and [20]), which holds for any (t; B; �; �; P ) 2 �Q and fFsg� stopping time
� 2 [t; T ]:

V (t; B; �; �; P ) = sup
�p2A(t;B;�;�;P )

Et;B;�;�;P [V (�;B(�); �(�); �; P (�))]:

We denote by F (B;�; �; P ) the set of admissible purchases or sales of stocks
when the agent�s position is (B;�; �; P ) 2 SOL

F (B;�; �; P ) �
�
� 2 R : (B � �P � C(�; P ); �+ �; �; P ) 2 SOL

	
and by z the subset of SOL where F (B;�; �; P ) 6= ;:
Now, we consider the non local operatorM that applied to V will give us the

value function after the best possible intervention. For any function Z : �Q! R
we de�neMZ : �Q! R by

MZ(t; �; P )�

8<:
sup

�2F (�;P )
Z(t; B + �P � C(�; P ); �+ �; �; P ) if (�; P ) 2 z

�1 if (�; P ) =2 z .

When Z is upper-semicontinuous it can be shown (see, for instance, [22]) that
there exists a Borel measurable function ��Z : z! R such that for any (�; P ) 2
z we have

MZ(t; �; P )�Z(t; B+ ��Z(�; P )�P �C(��Z(�; P ); P ); �+ ��Z(�; P ); �; P ) . (4)

If at time t it is optimal to transact it holds V (t; �(t); P (t)) =MV (t; �(t); P (t))
but in general we have V �MV because at any time t it is also possible to let
the system evolve freely. In this second case it is easy to show formally that the
application of the dynamic programming principle for an in�nitesimal interval
leads to the following condition

�@V
@t

� LV � 0

where the second order di¤erential operator

LV (t; B; �; �; P ) = rB @V
@B

+ �P
@V

@P
+
1

2
�2P 2

@2V

@P 2

corresponds to the in�nitesimal generator of the uncontrolled process. Since
only one of the two possible decisions, to trade or not to trade, must be taken
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optimally at any time t, we can argue that V is a solution of the following
Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) in �Q

min

�
�@V
@t

� LV; V �MV

�
= 0 . (5)

This is indeed the case but, as it is usual in impulse control problems, V is not
regular enough to be a classical solution of (5). It is not even continuous in some
points of �Q, such as, for instance, the points along the line � = 0 in t = T . In
the next section we characterize V as the unique constrained viscosity solution
of (5) verifying certain boundary conditions and we describe the form of the
optimal strategy.

3 Viscosity characterization and optimal trad-
ing strategy

Let SOL be the interior of SOL. We denote by Q the set Q � [0; T ) � SOL
and by @�Q the boundary

@�Q � ([0; T )� @SOL) [ (T � SOL):

When it is convenient we will denote (B;�; �; P ) 2 SOL by x = (B;�; �; P ):
To characterize V as a solution of (5) we are interested in the values assumed
by V on @�Q and to determine some bounds for V in �Q � [0; T ]� SOL.
At the �nal date T we have, 8(B;�; �; P ) 2 SOL

V (T;B; �; �; P ) = U(LT (B;�; �; P )) =

= U(B + L(�; P ) + � � (P � Pstr)+):
(6)

For t < T the behaviour of V at the boundary @�Q depends on the sign of �,
that is if the options are written or bought.
If � � 0 and min(B;�) < 0 it is necessary to clear the position in stocks and
bonds and keep only the options, otherwise the process could leave SOL with
a positive probability. In this case we have

V (t; B; �; �; P ) =MV (t; B; �; �; P ) = V (t; 0; 0; �; P ) =

= Et;P [U(� � (PT � Pstr)+)]

that is V is the expected value of the � options in T . If � � 0, x 2 @SOL
but min(B;�) � 0 the agent stays solvent and it is not possible to intervene
clearing the position in stocks because of the �xed cost K. Except for the
case B = � = 0 the value of V is not known a priori but it is greater than
Et;P [U(� � (PT � Pstr)+)].
If � < 0 and Sol(B;�; �; P ) = 0 it is necessary to perform the cheapest super
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replication strategy of � options by buying �� stocks and clearing out the
position in bonds. We have (� < 0)

V (t; B; �; �; P ) = V (t; 0;��; �; P ) =

= Et;P [U(�� � PT + � � (PT � Pstr)+)]:
with V (t; B; �; �; P ) =MV (t; B; �; �; P ) if � 6= ��.
It is not di¢ cult to see that V is locally bounded in �Q and it veri�es a sublinear
growth condition.

Proposition 1 We have, 8(t; B; �; �; P ) 2 �Q,

0 � V (t; B; �; �; P ) � Ce�(T�t)(B + �P + �PBS)
 (8)

where PBS is the Black-Scholes price (given P; Pstr; r; �; t; T ) of one call option
and

� = 
(r +
(�� r)2
2�2(1� 
) ):

Proof. Since J ~p(t; B; �; �; P ) � 0, 8~p 2 A(t; B; �; �; P ) it follows immediately
V (t; B; �; �; P ) � 0. Moreover V (t; B; �; �; P ) is less than the value function
of the same problem without transaction costs and solvency constraints. In
this case the optimal policy is to perfectly replicate a long (or short) position
in options and to invest the remaining value of the portfolio according to the
optimal policy of a Merton problem, see [16]. Given an initial portfolio (B;�)
the optimal expected �nal value of a Merton problem (without consumption,
�nite horizon and power utility Cx
) is equal to Ce�(T�t)(B +�P )
 . Since the
replicating portfolio to build in t has a price of ��PBS the upper bound in (8)
follows.

From (8) it follows in particular that V is continuous in (t; 0; 0; 0; P ) verifying

lim
(t0;x0)2Q

(t0;x0)!(t;0;0;0;P )

V (t0; x0) = V (t; 0; 0; 0; P ) = 0 8(t; 0; 0; 0; P ) 2 �Q . (9)

However V is not continuous in many other points of �Q and it is necessary
to consider the notion of discontinuous viscosity solutions of the HJBQVI. We
recall now the de�nitions of discontinuous viscosity subsolutions and superso-
lutions and of constrained viscosity solutions of (5) in Q = [0; T ) � SOL. Let
USC( �Q) and LSC( �Q) be the sets of upper-semicontinuous (usc) and lower-
semicontinuous (lsc) functions de�ned on �Q. Given a locally bounded function
u : Q ! R let u� and u� be respectively the upper-semicontinuous and lower-
semicontinuous envelope of u�����������

u�(t; x) = lim sup
(t0;x0)2Q

(t0;x0)!(t;x)

u(t0; x0) 8(t; x) 2 Q

u�(t; x) = lim inf
(t0;x0)2Q

(t0;x0)!(t;x)

u(t0; x0) 8(t; x) 2 Q .
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De�nition 2 Given O � SOL, a locally bounded function u : Q! R is called a
viscosity subsolution (resp. supersolution) of (5) in [0; T )�O if for all (�t; �x) 2
[0; T ) � O and '(t; x) 2 C1;2(Q) such that (u� � ')(�t; �x) = 0 (resp. (u� �
')(�t; �x) = 0) and (�t; �x) is a maximum of u� � ' (resp. a minimum of u� � ')
on Q, we have

min

�
�@'
@t
(�t; �x)� L'(�t; �x); u�(�t; �x)�Mu�(�t; �x)

�
� 0

(resp. u� and � 0).

De�nition 3 We say that a locally bounded function u : Q! R is a constrained
viscosity solution of (5) in Q if it is a viscosity supersolution in Q = [0; T )�SOL
and a viscosity subsolution in [0; T )� fSOL [ @SOLg.

We state now the viscosity property of the value function.

Theorem 4 The value function V (t; B; �; �; P ) is a constrained viscosity solu-
tion of (5) in Q:

The proof of the theorem follows along the lines of theorem 5.3 in [20]. The
state constraint (Bs; �s; �t; Ps) 2 SOL, 8s 2 [t; T ], makes it possible to extend
the subsolution property to the lateral boundary [0; T ) � @SOL. See also the
proof of theorem 3.7 in [22]. However there can be many constrained viscosity
solution of (5) and in order to characterize the value function we need to show
that the boundary condition satis�ed by V are su¢ cient to determine a unique
constrained viscosity solution of (5). An essential step to prove uniqueness is
to show a comparison principle between sub and supersolutions and to look
at V � as a subsolution and at V� as a supersolution. However, because V
is discontinuous at some points on the lateral boundary, we state only a weak
comparison principle which does not necessarily hold on [0; T )�@SOL:Moreover
V can be discontinuous whenever � = 0 and we distinguish the cases � > 0 and
� < 0. Let SOL+, Q+, SOL�, Q�, D be the sets�������

SOL+ � f(B;�; �; P ) 2 SOL : � > 0g , Q+ � [0; T )� SOL+

SOL� � f(B;�; �; P ) 2 SOL : � < 0g , Q� � [0; T )� SOL�

D �
�
(t; B; �; �; P ) 2 Q : � = 0

	
and SOL

+
, SOL

�
the closures of SOL+, SOL�.

Theorem 5 (Weak comparison principle) Let u 2 USC( �Q) be a viscosity
subsolution of (5) in [0; T ) � fSOL [ @SOLg and v 2 LSC( �Q) be a viscosity

11



supersolution of (5) in Q. Assume that������������������

lim sup
(t0;x0)2Q+

(t0;x0)!(T;x)

u(t0; x0) � lim inf
(t0;x0)2Q+

(t0;x0)!(T;x)

v(t0; x0) 8(T; x) 2 (T � SOL+)

lim sup
(t0;x0)2Q�

(t0;x0)!(T;x)

u(t0; x0) � lim inf
(t0;x0)2Q�

(t0;x0)!(T;x)

v(t0; x0) 8(T; x) 2 (T � SOL �
)

lim sup
(t0;x0)2Q

(t0;x0)!(t;0;0;0;P )

u(t0; x0) � lim inf
(t0;x0)2Q

(t0;x0)!(t;0;0;0;P )

v(t0; x0) 8t 2 [0; T )

(10)

and that for some constant 0 < C1 <1����� u(t; B; �; �; P ) � �C1(B + �P + �PBS)

 8(t; B; �; �; P ) 2 �Q

v(t; B; �; �; P ) � C1(B + �P + �PBS)
 8(t; B; �; �; P ) 2 �Q:
(11)

Then u � v on QnD:

The proof of this theorem follows along the lines of Theorem 3.2 in [1]. See
also theorem 3.8 in [22] and theorem 5.6 in [20]. As SOL is unbounded the
comparison is given in the set of functions satisfying the sublinear growth (11).
In order to use this comparison principle we need to know the behavior of V
approaching the �nal boundary T�SOL. It is possible to show (as in Lemma 3.2
in [1]) that V veri�es the following limit conditions near the boundary T �SOL������������������

lim
(t0;x0)2Q

(t0;x0)!(T;x)

V (t0; x0) = U(LT (x)) 8(T; x) 2 (T � SOL)nD

lim
(t0;x0)2Q+

(t0;x0)!(T;B;0;�;P )

V (t0; x0) = U(B + �(P � Pstr)+) 8(T;B; 0; �; P ) 2 D

lim
(t0;x0)2Q�

(t0;x0)!(T;B;0;�;P )

V (t0; x0) = U(B �K + �(P � Pstr)+) 8(T;B; 0; �; P ) 2 D .

(12)
The next theorem gives a complete viscosity characterization of the value func-
tion using the continuity in (t; 0; 0; 0; P ), the �nal boundary condition and the
sublinear growth of V , also taking account of the discontinuity in D.

Theorem 6 The value function V is continuous in QnD and it is the unique,
in QnD, constrained viscosity solution of (5) in Q which veri�es the boundary
conditions (9), (12) and the sublinear growth (8).

Proof. We apply Theorem 5 to the viscosity subsolution V � and to the viscosity
supersolution V�. The conditions (10) and (11) are veri�ed because of (9), (12)

12



and (8). Therefore V � � V� on QnD and since by de�nition V � � V� it follows
that V � = V� and V is continuous in QnD: Moreover suppose �V is another
constrained viscosity solution of (5) in Q which veri�es the boundary conditions
(9), (12) and (8). By the comparison principle we have �V � � V� = V � � �V�
and consequently V = �V in QnD.

Now we describe, in a formal way, the optimal strategy. Let A � Q and
B � QnA be the regions de�ned by����� A �

�
(t; �; P ) 2 Q : V (t; �; P ) =MV (t; �; P )

	
B �

�
(t; �; P ) 2 Q : V (t; �; P ) >MV (t; �; P )

	
.

If (t; �(t); P (t)) 2 A then it is optimal to intervene. A is called the intervention
region and the best action is given by ��V (�(t); P (t)), where �

�
V is the function

de�ned in (4). When (t; �(t); P (t)) 2 B, the continuation region, it is not
optimal to intervene and the system evolves freely. Therefore it is natural to
guess that, for the initial condition (t; B; �; �; P ) 2 �Q, the optimal policy
~p� = f(��i ; �

�
i )g = ~p�(t; B; �; �; P ) will be de�ned recursively by (��0 � t; i 2 N)���������
��i+1 = inf

�
s � ��i j (s; �~p

�
(s); P (s)) 2 A

	
��i+1 =

(
��V (�

~p�(��i+1); P (�
�
i+1)) if ��i+1 <1

arbitrary if ��i+1 = +1 .

4 Markov chain numerical approximation

As usual in stochastic control problems the Hamilton-Jacobi-Bellman quasi-
variational inequality (5) can only be solved by a numerical procedure. We will
use the Markov chain approximation method due to Kushner (see [17] and for
an application to options reservation prices [12], [10], [25]). The basic idea is
to approximate the controlled Markov di¤usion by a controlled Markov chain
and to apply the discrete time dynamic programming principle. We propose a
discrete dynamic programming scheme for this controlled Markov chain, which
corresponds to the HJBQVI and can be solved backward in time from the �-
nal condition (6). To show that the solution V h of this discrete inequality
converges to the value function V of the continuous problem we will use the
Barles-Souganidis viscosity solution method (see [2]). We will show that the usc
(lsc) envelope of V h converges, as the step size h goes to zero, to a viscosity
subsolution (supersolution) of (5). Then by applying the comparison principle
it follows that V h converges locally uniformly to V .
Consider the partition 0 = t0 < th1 < :::: t

h
n�1 < tn = T of the time interval

[0; T ] where thi = ih for i = 0; :::; n and h =
T
n is the time step. The Markov chain

describing the discrete stock price process Ph(ti) is modeled by the di¤erence
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equation

Ph(ti+i) =

(
Ph(ti)� u with probability pu

Ph(ti)� d with probability pd = 1� pu
(13)

where the up and down movements and the corresponding probabilities pu; pd
are obtained by equating the �rst and second moments of the chain with those
of the continuous process. There are several ways u, d and the corresponding
probabilities pu; pd, can be chosen in such a way that the discrete process Ph(ti)
converges in distribution to P (t) as h! 0 (see, for a proof of convergence [7]).
We used pu = pd = 1

2 and ������ u = e
(�� 1

2�
2)h+�

p
h

d = e(��
1
2�

2)h��
p
h:

which are an approximation of order O(
p
h3) of the exact values which are

obtained by matching the �rst and second moments of Ph(ti) and P (t) when
pu = pd =

1
2 . We denote by PT

h the price binomial tree generated by (13)
in the interval [0; T ] and by PThti the possible values in ti. By analogy with
the price process we discretize the bond space B by using the deterministic
di¤erence equation

Bh(ti+i) = B
h(ti)e

rh (14)

starting from a set of initial conditions

BGh0 = fl � �Bh : l = 0;�1;�2; :::g : (15)

BGh will denote the bond grid generated by (14), (15) and BGhti the possible
values in ti. We discretize the � and � spaces by the one-dimensional lattices

�h� = f� = j � ��h : j = 0;�1;�2; :::g
�h� = f� = j � ��h : j = 0;�1;�2; :::g

where ��h > 0 and ��h > 0 are respectively the spatial steps of stocks and
options. The approximated solvency region is de�ned by (i = 0; :::; n)

SOLhti =
�
(B;�; �; P ) 2 BGhti � �

h
� � �h� � PThti : Sol(B;�; �; P ) � 0

	
and the computational domain Qh is

Qh =
�
(t; B; �; �; P ) : t = ih; i = 0; 1; :::; n; (B;�; �; P ) 2 SOLht

	
.

It is immediate to see that

lim
h#0

dist
�
(t; x); Qh

	
= 0 for all (t; x) 2 �Q .
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Given Bti 2 BGhti ; Pti 2 PT
h
ti , � 2 �

h
� we denote by B

�(Bti ; Pti ; �) the new
value of B in ti after a transaction of � stocks

B�(Bti ; Pti ; �) = argmin
B̂2BGh

ti

dist(B̂; Bti � �Pti � C(�; Pti))

The set Fh(Bti ; �; �; Pti) of admissible purchases or sales of stocks when the
agent�s position is (Bti ; �; �; Pti) 2 SOLhti is de�ned by

Fh(Bti ; �; �; Pti) =
�
� 2 �h� : (B�(Bti ; Pti ; �); �+ �; �; Pti) 2 SOLhti

	
.

Let us de�ne the non local operatorMhV h(ti; xti) (here xti = (Bti ; �; �; Pti) 2
SOLhti , i = 0; 1; :::; n)

MhV h(ti; xti)�

8<:
sup

�2Fh(xti )

Eti;xti [V
h(ti+1; B

�(Bti ; Pti ; �)e
rh; �+ �; �; Pti+1 ]

�1 if Fh(xti) = ; .

We consider the following discrete dynamic programming scheme to approxi-
mate V (here xti = (Bti ; �; �; Pti) 2 SOLhti , i = 0; 1; :::; n)

V h(ti; xti) =Max

8<:
Eti;xti [V

h(ti+1; xti+1 ]

MhV h(ti; xti)
(16)

which has to be solved backwards in time from the �nal condition in tn = T

V h(tn; Btn;; �; �; Ptn;) = U(LT (Btn ; �; �; Ptn)) (17)

which holds for every (Btn ; �; �; Ptn) 2 SOLhtn . We show now that V
h converges

locally uniformly to the value function V .

Theorem 7 Let V h(ti; xti) be the solution to (16)-(17). Then

lim
(ti;xti )!(t;x)

h#0

V h(ti; xti) = V (t; x) 8(t; x) 2 QnD [ (T � SOL) (18)

and the convergence is uniform on any compact subset of QnD [ (T � SOL).

Proof (Sketch). Let, 8(t; x) 2 Q;����������

�V (t; x) = lim sup
(ti;xti )!(t;x)

h#0

V h(ti; xti)

V
¯
(t; x) = lim inf

(ti;xti )!(t;x)
h#0

V h(ti; xti) .

We need to show that �V is a viscosity subsolution in Q [ [0; T )� @SOL and V
¯is a viscosity supersolution in Q: Then by using (17) and the weak comparison
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principle we obtain �V � V �V
¯
in QnD. By the de�nition of �V and V

¯
it follows

that (18) holds true and the convergence is uniform on any compact subset of
QnD [ (T � SOL). We only show that V

¯
is a supersolution as the proof for �V

uses the same arguments. Consider (�t; �x) 2 Q and '(t; x) 2 C1;2(Q) such that
(V
¯
� ')(�t; �x) = 0 and (�t; �x) is a minimum of V

¯
�' on Q. We have to show that

min

�
�@'
@t
(�t; �x)� L'(�t; �x);V

¯
(�t; �x)�MV

¯
(�t; �x)

�
� 0 .

Without loss of generality we can assume that the minimum is strict. Then
there is a sequence hn, converging to zero, such that V hn � ' has a minimum
in Qhn at (sn; yn) and (sn; yn) ! (�t; �x) and V hn(sn; yn) !V¯ (

�t; �x) as hn # 0.
Considering (16) at the point (sn; yn) we obtain

V hn(sn; yn) �MhnV hn(sn; yn).

As n!1 and hn ! 0 we have����� limn!1 V
hn(sn; yn) = V¯

(�t; �x)

limn!1MhnV hn(sn; yn) =MV
¯
(�t; �x)

and therefore V
¯
(�t; �x) �MV

¯
(�t; �x). To complete the proof we need to show now

that
@'

@t
(�t; �x) + L'(�t; �x) � 0 .

Let yn = (Bn; �n; �n; Pn) and �x = ( �B; ��; ��; �P ). As (sn; yn) is a minimum of
V hn � ' in Qhn we have

Esn;yn [V
hn(sn + hn; Bne

rhn ; �n; �n; Pne
(�� 1

2�
2)hn+��

p
hn)]

�Esn;yn ['(sn + hn; Bnerhn ; �n; �n; Pne(��
1
2�

2)hn+��
p
hn)]

� V hn(sn; Bn; �n; �n; Pn)� '(sn; Bn; �n; �n; Pn)

(19)

where � is a random variable taking values �1 with equal probability p = 1
2 .

From (16) considered at (sn; yn) and (19) it follows

0 � Esn;yn ['(sn + hn; Bne
rhn ; �n; �n; Pne

(�� 1
2�

2)hn+��
p
hn)]

�'(sn; Bn; �n; �n; Pn)

and since Phnconverges in distribution to P , as hn ! 0 we obtain (here Z is
the standard normal distribution)

0 � lim inf
n!1

E
sn;yn

['(sn + hn; Bne
rhn ; �n; �n; Pne

(�� 1
2�

2)hn+��
p
hn)]� '(sn; yn)

hn

� lim inf
h!0

E�t;�x['(�t+ h; �Be
rh; ��; ��; �Pe(��

1
2�

2)h+Z�
p
h)]� '(�t; �x)

h

=
@'

@t
(�t; �x) + L'(�t; �x) .
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5 Numerical results

In this section we present some numerical results of our scheme for an investor
whose preferences are modeled by the constant relative risk aversion utility
function

U(L) =
1



L


with 0 < 
 < 1. Most of the papers on options indi¤erence prices assume an
exponential utility function which exibits a constant absolute risk aversion (see
[15], [12], [6], [21], [25]). The choice of the exponential utility is basically due to
the fact that in this case the reservation prices do not depend on the initial cash
holdings. This decrease in dimensionality simpli�es the analysis and reduces the
computational load of the numerical solution. However the exponential utility
has some serious drawbacks to describing the investor�s behaviour. Without
transaction costs the optimal strategy of a portfolio problem with exponential
utility is to maintain constant the discounted value invested in the risky asset,
independently of the level of wealth. Changing only the amount of money in
the bank account, this strategy leads to extremely levereged position for low
levels of wealth. Investors behave in a more risky way when they are poor than
when they are rich and this appears unrealistic. In our numerical experiments
we have used the following values of the model parameters: � = 0:06, � = 0:4,
r = 0:02, K = 0:1, c = 0:005, 
 = 0:3, T = 1: The �nite-di¤erence discretization
was implemented with a rectangular mesh in the B;� variables of approximately
12; 000 points and a time grid of 40 steps for the discrete stock price process. The
boundary conditions for the value function were set according to the analysis of
section 3. We �xed the initial price of the risky asset at P0 = 100 and considered
the three possible values 90; 100; 110 for the call option strike price Pstr. As for
the option initial price P c the most natural choice has been to set P c = PBS ,
the Black-Scholes price, in order to exclude arbitrage opportunities and to focus
on the use of options because of transaction costs and solvency constraints.
Our �rst numerical experiments were intended to show the form of the optimal
policy when an open long or short position in options is present in the portfolio.
As shown in ([11], [23], [22], [1]), without options the no trade region of the
optimal policy in the presence of transaction costs and solvency constraints is
described by a cone with its vertex in the origin. In Fig. 1 it is depicted the
optimal policy of our model without options. The two continuous lines inside
the cone represent the recalibrated portfolios. The upper (lower) line is the set
of target portfolios where it is optimal to move when the investor�s position is
in the upper (lower) part of the trading area, that is above (below) the cone.
Some optimal transactions have been depicted by the straight lines connecting
the threshold portfolios in the transaction region to the corresponding target
portfolios inside the no trade area. The dotted line inside the cone represents the
Merton line of optimal portfolios for a problem with power utility and without
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transaction costs.
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Figure 1. Transaction regions in the plane (�P;B) at t = 0
without options.

When there are � options in the portfolio, by using the results in [16], the
optimal policy without market frictions is to perfectly replicate the long or short
position in options and to invest the remaining value according to the optimal
policy of a Merton problem. That is the optimal portfolio must be continuously
recalibrated to verify

(B �B�BS) =
1�M
M

(�� ��BS)P (20)

where M = ��r
�2(1�
) is the Merton proportion and (B

�
BS ; �

�
BS) is the portfolio

perfectly replicating � options. Considering transaction costs and solvency con-
straints the no trade region of a problem with options seems to be still a cone
with two continuous lines of target portfolios inside the cone, but now its vertex
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is located along the straight line (20).
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Figure 2. Transaction regions for a writer of 2 (left) and 8 (right) call options.
Pstr = 100, PC = PBS .
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Figure 3. Transaction regions for a buyer of 2 (left) and 8 (right) call options.
Pstr = 100, PC = PBS .

In Fig. 2 and Fig. 3 the optimal control regions and the recalibrated portfolios at
t = 0 are shown for, respectively, a writer and a buyer of 2 and 8 at the money
call options with initial price equal to the Black and Scholes price (the other
model parameters remaining the same). The dotted lines inside the no trade
regions represent equation (20) in the four cases, that is the optimal portfolios
without frictions. Some numerical experiments have been tried varying the
model parameters concerning the transaction costs, the risk aversion, and the
�nal horizon. The e¤ects on the optimal regions have been in line with what
expected and similar to to the case without options. In particular increasing the
transaction costs coe¢ cients or decreasing the time to expiration widens the no
trade area, reducing the convenience and therefore the frequency of trading. The
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main purpose of our numerical investigation was to show that in the presence
of market frictions a signi�cant use of options becomes pro�table in our model.
We have considered the following set of possible values for the number of options
held in the portfolio:

� = 0;�1;�11;�21;�31;�41;�51:

The most important results of our computations are illustrated in Figs. 4-12
below. We have focused our attention on how the trading in the calls depends
on the initial portfolio of the investor and how it depends on the strike prices and
market prices of the options. Fig. 4 shows how many at the money call options
(Pstr = P0) an investor, having no derivative at t = 0; will buy (positive values)
or sell (negative values) at the beginning of the investment period. The sign
and size of the trade are shown as a function of the investor�s initial holdings in
stocks and bonds. We see that if the initial wealth is mainly in stocks the agent
will sell options instead of stocks and vice versa he will buy options when a large
fraction of wealth is invested in bonds. The number of traded options increases
with the level of wealth but the selling region of at the money call options is
much smaller than the buying region. Fig. 5 and Fig. 6 have the same meaning
of Fig. 4 but with strike prices respectively of 90 and 110: We can see by these
�gures that increasing the strike price (for �xed P0 = 100) the option buying
region decreases and the selling region increases. However the buying region is
fairly stable while the selling region is very sensitive to a large increase in Pstr.
This di¤erent sensitivity comes from the di¤erent amount of risk taken by the
writer compared to the buyer of a call option. Fig. 6 shows an extensive use at
t = 0 of deep out of the money call options quoted at their Black and Scholes
price. In Fig. 7 and Fig. 8 the investor is allowed to choose which one of the three
call options to buy or sell at t = 0, at its speci�c Black and Scholes price. We see
in Fig. 7 that he will choose the out of the money option (Pstr = 110) when he
is a writer and the option in the money (Pstr = 90), when he is a buyer. In this
�gure the Merton�s dotted line of optimal portfolios without market frictions is
also depicted. Fig. 8 shows the percentage of the value of the initial portfolio
which is invested in these two options at t = 0 for the di¤erent initial holdings
in stocks and bonds. Under our assumptions on the model parameters the long
position in options amounts up to 10% of the value for some initial portfolios
while the short position is always below 5% of the initial wealth. If the call
price is not equal to the Black and Scholes price then the investor also exploits
the di¤erence in prices. In Fig. 9 and Fig. 10 we assume that the price of the
call at the money is 2% greater than the Black and Scholes price. We see that
the short positions are now made of this option, they are bigger and the selling
region is more extended. The use of options is very sensitive to call prices which
are lower than the Black and Scholes prices because of the smaller risk taken
when the calls are bought. In Fig. 11 and Fig. 12 the price of the call at the
money is 2% smaller than Black and Scholes price. The long positions are made
of this option, the buying region extends to the right of the Merton line and it
is much larger than the selling region. In both cases the investment in options
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amounts up to 15% of the portfolio value for some initial conditions and we see
that the investor uses options for almost all initial portfolios.
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Fig 4. Number of call options bought (+) or sold (-) at
t = 0 for di¤erent initial holdings (�0P0; B0):

Pstr = P0 = 100, PC = PBS .
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Fig 5. Number of call options bought (+) or sold (-) at
t = 0 for di¤erent initial holdings (�0P0; B0).

Pstr = 90, PC = PBS
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Fig 6. Number of call options bought (+) or sold (-) at
t = 0 for di¤erent initial holdings (�0P0; B0).

Pstr = 110, PC = PBS .
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Fig. 10. Number of options bought or sold at t = 0
for di¤erent initial conditions.
PC = PBS � 1:02 if Pstr = 100.
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PC = PBS � 0:98 if Pstr = 100.
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Fig. 12. Number of options bought or sold at t = 0 for
di¤erent initial conditions.

PC = PBS � 0:98 if Pstr = 100.

6 Concluding remarks

Most of the articles on options in the mathematical �nance literature consider
the problem of pricing and hedging these derivatives. In this paper we have for-
mulated a model where options can play an active role in portfolio management
because real �nancial markets are not complete and these derivatives cannot
be perfectly replicated. Our numerical experiments have shown that if we take
account of transaction costs and solvency constraints it is convenient to add
static policies in options to the set of the trading strategies. When we assume
the Black and Scholes price the agent will take a long (short) position in call
options if his initial portfolio is su¢ ciently on the left (right) of his Merton line.
He buys in the money and sells out of the money calls. The number of call
options sold tends always to be smaller because of the greater amount of risk
present in a short position. It is su¢ cient a small di¤erence between the market
and the Black and Scholes price to increase greatly the use of these derivatives,
especially when the call is underpriced. The investor exploits the di¤erence in
prices but the investment in options remains bounded because a perfect arbi-
trage is not possible. There are several directions in which our approach can
be further investigated. It is possible to add other derivatives, such as the put

25



options, to the set of available securities and to allow to invest in more than
one derivative at the same time. However since the optimal policy essentially
hedges the derivatives we don�t believe that this extension will increase signi�-
cantly the optimal solution. One can think of enlarging the class of admissible
policies considering dynamic strategies which involve options. In this case it is
necessary to specify the process of the option market price and the most natural
choice could be still to use the Black and Scholes price process. Furthermore
we can consider a more general stochastic process for the stock price dynamics,
such as a jump-di¤usion process. Considering jump processes the market is in-
complete simply because not all of the stock price risk can be hedged away. In
this case it is interesting to investigate if introducing options can improve the
solution of our utility maximization problem by reducing the unhedgeable risk
present in the portfolio.
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