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8.0.1 - We shall now try to apply the theory developed in part I of the previous paper, published in 2013 as 
n.20 of this working papers series (Rossi, 2013), to an isolated system and to the probability that it does not 
change. 
8.0.2 - An isolated system is not only constituted by a permanent set of members, were they people, animals 
or objects. An isolated system should have within itself all the relationships between its members and 
especially all its evolution rules. Nothing must be outside it which influences it. This notion defines 
something which is an abstraction from reality, which is obtained by giving importance to something and 
disregarding something else. In particular if time is essential in the description of the system it must not be 
subject to limitations that come from outside but only from within. 
8.0.3 - We shall study here an isolated system that depends on time, that is a birth-cohort, and examine the 
probability of its changing or not: in this context to change means to die and not changing means to survive. 
The aim should be to analyse the survival probability of an individual, but this individual cannot be a definite 
one, otherwise the study would be useless for everyone else. Then the individual must be identified as a 
generic member of a group, so that the conclusions can be useful for every member of any group that can be 
considered similar to the original one. 
 
8.1 - A life table is an example of an isolated system that remains unchanged over time; indeed it provides 
the framework for analyzing the mortality of a closed group, the life table cohort, that shares an initial 
condition: the time of birth (Keyfitz, 1985). Death is the only cause of decrement in the group and death 
possible causes are uniformly present during the whole period. And the period ends when all the members 
are dead. The extreme age is not imposed but comes out of the biological evolution of the cohort and can be 
any time after its extinction; just for simplicity it is chosen as being one only and small enough. 
 
8.2 - The approach to life table generally begins with the concept of the force of mortality µ(x) of the survival 
function S(x), i. e. the probability for  a newborn to survive to age x; S(0) (S(0) =1) is the initial size of the 
life table cohort. 
The force of mortality is the instantaneous risk of dying at the exact age x, 
 
                   1        d                        d 
µ(x) =  − ——  ——  S(x)    =   − —— ln S(x)      [1] 
                 S(x)    dx                      dx 
 
and  it describes the proportional decline in the curve S(x) at this age. 

 
Suppose µ(x) satisfies conditions 
i) for each x ≥ 0, µ(x) ≥  0. 
 
______ 

*Section 8.0 is actually due to Rossi.  
 



 
        ∞ 

ii)  ∫  µ(t) dt  = ∞. 
    0 

 
Since µ(x)  is continuous everywhere except finitely many points, [1] can be integrated 
 
                           x 

S(x)   =  exp ( - ∫  µ(t) dt ),  x ≥ 0.         [2] 
                        0 

 
i.e. 
 
S(x)  ≥ 0, S(0) = 1,            
 
lim S(x) = 0, and  y >x  =>  S(x) > S(y). 
x→∞ 
 
then the probability that a newborn survives to y (given the newborn survived to x) is 
 
                                   y 

                     exp ( - ∫   µ(t) dt )                                               
                              0 

p(x,y)   =   ——————————                             [3] 
                                 x 

                   exp ( - ∫   µ(t) dt )                                              
                             0 

 
[3]  is an example  according to previous conclusion 4.6; the  logarithmic  transformation of [3]  in fact gives 
an issue of a kind 
 
G(x,y) = g(y)  − g(x)                                  [4] 
 
9.0 - As an application of the approach developed in the previous pages  we may use the recent 
reconstruction of the 1948 cohort life table (Maccheroni, 2011). 
Such a work proved necessary because no official cohort mortality tables for the overall population exist in 
Italy. There are two cohort tables (called RG48 and IP55, pertaining to the 1948 and 1955 cohorts) used by 
Italian insurance companies to determine premiums. These life tables were made by ANIA,  which used the 
demographic forecast of the Ragioneria Generale dello Stato (RGS,1995) regarding  RG48 (1998); however 
the mortality decline happened to be greater than predicted. 
 
9.0.1 - Here we are going to present the main results of a new 1948 cohort life table (fig. 1), which was 
provided in a research that proposed some benchmarking in the construction of demographics to compute 
premiums (Maccheroni, 2011). The cohort life table has been constructed on the Istat period life table 
available during the years 1974-2008 (Istat, 2001)  as regards the age group 26-60. The other two age groups 
(0-25 and 61-102) have been provided respectively by a mortality reconstruction which covers the period 
1948-1973 (Maccheroni and Locatelli, 1999) and by a  mortality forecast up to 2050 (Maccheroni, 2011). 
 
9.0.2 - This forecast is carried out with the time series method of Lee and Carter (1992); the  forecast model 
has the form: 
 
mxt = exp(ax  +  bx kt  +  εxt)                                                                                                  [5] 
 
 



with  mxt  the observed age-specific death rate (number of deaths during age interval (x, x+1) per person-year 
at the same age) over time t (x = 0, 1, …, 102; t = 1974, 1975, …, 2008) and  the parameters: 
ax  the standard age-pattern of mortality;  ax  is the average of the logarithm of mxt, 
bx   the age-specific pattern of mortality change, 
kt   the period effect,  
εxt  a set of random disturbances. 
The parameters  bx  and kt  can be  estimated via singular value decomposition (SVD) of the matrix  {ln mx t  - 
ax }; the first left and right singular vectors give initial estimates of bx and kt respectively. To provide a 
unique solution for  bx  and kt two normalizations are required 
 
 ∑x bx   = 1  and   ∑t kt  = 0 
 
The period effect kt has been modelled as a random-walk with drift (Lee and Carter, 1992) and  the death 
rates forecasts  are made using [5] after computing the future values for kt (t= 2009,..., 2050). 
Death rates  mx  are   then  usually transformed into  probabilities that a person exact age x will die within  
one year qx, (Wunsch and Termote, 1978) by  the relation,  
 
               2 mx 
qx   =                                   [6]         
              2 +  mx 

 
qx are the basis of the life table and they represent the probability that a person of exact age x will die before 
attaining exact age x+1. 
 

 

 
9.1 - We thus construct a matrix (x = 0, … 102; t = 1948, … 2050) of probability of death and the secondary 
diagonal of this matrix describes therefore the mortality pattern of the 1948 cohort up to age 102; finally the 
method of Denuit and Goderniaux (2005) has been used in estimating qx at advanced ages (103 and over). 

-8

-7

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60 70 80 90 100 110 120

Lo
g

 -
ro

b
a

b
il

it
ie

s 
 o

f 
 d

e
a

th

Age

Fig. 1 - Log-probabilities of death for the 1948 male 

cohort 



Figure 1 exhibits the probabilities of death for the 1948 male cohort (qx,1948) which are about the central 
(median) scenario (the more probable one)  given by the model [5]. Mortality in the first years of life is 
typically much higher than in the immediately following years and  fig. 1 shows that the abscissa of the first 
qx,1948 minimum  (fig. 1), which is also the global one, is at age 12. The abscissa of the other minimum is 27 
years and  between ages 12 and 27, where mortality is growing, there is the so-called accident hump, mostly 
due to road accident traumas. After age 27,  qx,1948 increases progressively. 

 

 

 
9.2 - The usual complete life table is computed from the sequence of qx  and   an additional function of the 
life table is the probability of survival  px =1- qx, which represents the probability that an individual exactly x 
years of age will survive to exact age x+1; thus  we can also arrive at S(x) [2] as follows 
 
               x-1 
S(x)  =    Π pt                                [7]          
             t=0 
 
for any integer x. 
It is our purpose to compute  and illustrate (Appendix, tab.  1)  the p(xc,y) probabilities respecting the male 
1948 cohort, i.e. the probability that a newborn in c (c=1948), who  survived to the exact age x (x= 0, 1, 
…114), will still survive exact age y (y = x+t; t = 1, 2,…; p(xc,x) = 1; p(xc,115) = 0); figure 3 exhibits 
graphically, age by age, these probabilities. 
A life table is an example of a (finite) Markov chain (Chiang, 1968) and   p(xc,y)  may be expressed as the 
product of two separate probabilities   
 
p(xc,y) =   p(xc,z) p(zc,y)  
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Fig. 2 - Log-probabilities of survival for the 1948 male cohort



(xc < zc < y).  A numerical example would be
case are   (Appendix, tab.1): 
 
0,01753 = 0,99087 × 0,0177 
 
9.3 - Theoretical and practical survival model
approach developed in previous sections, so that both reinforce each other. 
 
 

 
From [5] we have 
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age x  − which happens in (1948+x) − will survive up to exact age y

A numerical example would be  p(51948,103) =   p(51948,9) p(91948,103) 

practical survival modelling in demography  perfectly agree  with the theoretical 
approach developed in previous sections, so that both reinforce each other.  
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lg p(xc,y) =   g(y)  − g(xc) 
 
and from the requirements for a survival function we can see that for x1948  = 0,  lg p(x1948,y) = lg S(y), i. e. 
the logarithm of the survival function  for the 1948 male cohort and it is the function g(t), as found in part I, 
section 4. The results of these calculations are shown in fig. 2  and are obtained by the data in the first line of 
the matrix in Appendix, tab. 1. 
 
 

9.4 - All the p(xc,y) results are shown in figure 31, where the profile seems to rise in the very first years of life 
because  this  cohort  has experienced an elevated child mortality; later on  the p(xc,y) shape  declines 
progressively, particularly at old ages, when the  survival curves show a rapid decline (fig. 3) and also the 
longevity pattern of persons at the advanced ages drops too. 

These survival curves could be described by the Weibull type survival function (C. Maccheroni, 1998, 
Dugan et al.2005) which can be expressed as 
 
 S(y) = exp{-[(  y - xc)/m]b}  (y ≥ xc; xc ≥ 0, b, m > 0)              [8] 

where xc is the “minimum life”, m is a scale parameter and b is a shape parameter. As the relationship [8] 
does not perform well at younger ages, the curve [8] has been fitted to 1948 cohort survival experience (tab. 
1) only  at old ages (xc ≥ 60) where  the curve fitting provides a valuable model. 
On the diagonal of the plane (x,y) (fig. 3)  there is  the fixed sequence of minimum life xc, (xc ≥60),  while 
parameters b and m are to be estimated: this can be done  by  the  least squares method. The  b and m 
estimates at each integer xc value in the  age group 60-85 have  been evaluated this way. 
The lines of b(xc) (fig. 4) and m(xc) (fig. 5) plotted show quadratic relations that can be obtained by 
regression analysis as follows: 
  
b(xc)  =  - 0,0002 xc

 2 + 0,0178 xc  + 1,8491        (R2 =0,9999) 
 
m(xc)  =    0,0073 xc

 2 – 1,7339 xc  + 103,12        (R2=1) 
 
R2 values (0 ≤  R2 ≤ 1) provide results of the goodness-of-fit analyses. 
So the  p(xc,y) survival function in the age group 60-85 can be determined by the following equation  

p(xc,y) = exp{-[(y - xc)/ m(xc)  ] 
b(xc )}                      [9] 

xc =60, 61, …,   85;  y> xc. 

 

                                                           
1 In fig. 3 the values of y- axis  run parallel to the axis itself, so as not  to interfere with the  p(xc,y) curve. 
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0 1 2 3 4 5 6 7 8 9 10 … 101 102 103 104 105 106 107 108 109 110 111

0 1 0,9122 0,8743 0,8555 0,8454 0,8397 0,8364 0,8343 0,8330 0,8321 0,8314 … 0,0293 0,0211 0,0147 0,0099 0,0065 0,0040 0,0024 0,0014 0,0007 0,0004 0,0002

1 1 0,9584 0,9378 0,9268 0,9206 0,9169 0,9146 0,9132 0,9122 0,9114 … 0,0321 0,0231 0,0161 0,0109 0,0071 0,0044 0,0026 0,0015 0,0008 0,0004 0,0002

2 1 0,9785 0,9670 0,9605 0,9567 0,9543 0,9528 0,9517 0,9510 … 0,0335 0,0241 0,0168 0,0114 0,0074 0,0046 0,0027 0,0015 0,0008 0,0004 0,0002

3 1 0,9882 0,9816 0,9777 0,9752 0,9737 0,9726 0,9718 … 0,0343 0,0247 0,0172 0,0116 0,0076 0,0047 0,0028 0,0016 0,0008 0,0004 0,0002

4 1 0,9933 0,9893 0,9869 0,9853 0,9842 0,9834 … 0,0347 0,0249 0,0174 0,0118 0,0076 0,0048 0,0028 0,0016 0,0009 0,0004 0,0002

5 1 0,9960 0,9935 0,9920 0,9909 0,9900 … 0,0349 0,0251 0,0175 0,0118 0,0077 0,0048 0,0028 0,0016 0,0009 0,0004 0,0002

6 1 0,9975 0,9959 0,9948 0,9940 … 0,0350 0,0252 0,0176 0,0119 0,0077 0,0048 0,0029 0,0016 0,0009 0,0004 0,0002

7 1 0,9984 0,9973 0,9965 … 0,0351 0,0253 0,0176 0,0119 0,0078 0,0048 0,0029 0,0016 0,0009 0,0004 0,0002

8 1 0,9989 0,9981 … 0,0352 0,0253 0,0177 0,0119 0,0078 0,0048 0,0029 0,0016 0,0009 0,0004 0,0002

9 1 0,9992 … 0,0352 0,0253 0,0177 0,0120 0,0078 0,0048 0,0029 0,0016 0,0009 0,0004 0,0002

10 1 … 0,0353 0,0254 0,0177 0,0120 0,0078 0,0048 0,0029 0,0016 0,0009 0,0004 0,0002

… … … … … … … … … … … …

100 0,7402 0,5327 0,3719 0,2512 0,1633 0,1018 0,0604 0,0341 0,0182 0,0093 0,0044

101 1 0,7197 0,5024 0,3393 0,2207 0,1375 0,0816 0,0461 0,0246 0,0125 0,0060

102 1 0,6981 0,4715 0,3066 0,1910 0,1135 0,0640 0,0343 0,0174 0,0083

103 1 0,6753 0,4392 0,2736 0,1625 0,0917 0,0491 0,0249 0,0120

104 1 0,6503 0,4051 0,2406 0,1358 0,0726 0,0369 0,0177

105 1 0,6230 0,3700 0,2088 0,1117 0,0567 0,0272

106 1 0,5940 0,3352 0,1793 0,0910 0,0437

107 1 0,5643 0,3019 0,1532 0,0736

108 1 0,5350 0,2715 0,1304

109 1 0,5074 0,2437

110 1 0,4803

111 1
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