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Abstract

We study a rent-seeking contest in which players have heterogeneous and private

valuations. In addition to their own type, agents only know that all valuations are

drawn from a distribution, of which they only know the mean. We obtain a closed-

form solution for agents’ optimal level of investment and subject it to comparative

statics analysis. We also investigate the issue of entry in the game and the amount of

rent dissipation that results in equilibrium. Finally, we compare our results with those

that would emerge in a context of perfect information.

JEL Classification : D72, D82

Keywords : rent-seeking; contests; private information; imperfect information.

1 Introduction

A rent-seeking game is a probabilistic contest in which players exert costly effort in order to

influence the probability that they will be awarded a prize. Rent-seeking games were first

investigated by Tullock (1980). In the following decades, Tullock’s seminal model has been

extended and generalized in many important directions (see Congleton et al., 2008, for a

∗Contacts: andrea.gallice@unito.it; telephone: +390116705287; fax: +390116705082.
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recent and comprehensive literature review). In particular, an interesting and ongoing line

of research aims at relaxing the standard hypothesis according to which all participants in

the game share a common and publicly known valuation of the prize.

Indeed, in many typical applications of rent-seeking games (lobbying for political favor,

R&D races to secure a patent, fighting among individuals, organizations, or countries to con-

quer a contested resource), the alternative assumption of asymmetric and private valuations

seems more realistic. For instance, in the case of R&D expenditures, different competitors

may assess the potential of the patent according to different information or in light of dif-

ferent scenarios, where these may in turn be influenced by agents’personal attitudes and

biases. Furthermore, clearly no agent has incentives to truthfully disclose his valuation to

rivals.

Initial contributions that pursued this line of research allowed for heterogeneity in players’

valuations but maintained the assumption of their common knowledge (see, for instance,

Hillman & Riley, 1989; Nti, 1999; Stein, 2002). On top of asymmetry, other papers then

investigated the consequences of the privacy of players’valuations in various contexts:1 two-

player games with one-sided private information and continuous types (Hurley & Shogren,

1998a), two-player games with two-sided private information and discrete types (Hurley

& Shogren, 1998b, Malueg & Yates, 2004) or continuous types (Ewerhart, 2010), n-player

games with one-sided private information and discrete types (Schoonbeek & Winkel, 2006).

This paper contributes to the literature by introducing and studying a rent-seeking game

in which n ≥ 2 players have asymmetric and private valuations. In particular, we study a

framework in which the only information available to players (in addition to the knowledge of

their own type) is that all valuations are identically and independently distributed according

to an unknown probability distribution with mean v̄. Note that this is a weaker hypothesis

with respect to the standard private values assumption that requires players to know the

entire distribution of types and not just its mean.2

The information structure that we adopt is thus minimal and can mimic a number of

1This line of research, which is the one we pursue in this paper, assumes that agents know their own
type (i.e., their own valuation of the prize) but are uncertain about the other participants’valuations. A
different strand of the literature (see, for instance, Wärneryd, 2003) investigates instead rent-seeking games
where players are uncertain about their own valuation since they cannot properly ex-ante assess the quality
of the prize.

2The private value assumption is commonly used in many contexts (e.g., auction theory; see Krishna,
2002) and its implications have also been explored in the case of rent-seeking games (Hurley & Shogren,
1998a).
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real-life situations. For instance, it can apply to all those cases in which players do not know

the identity of the other participants. As such, agents cannot infer or assess their rivals’

valuations based on their reputation or observable characteristics and must therefore rely

on some very general summary statistic such as the mean or expected value. The common

knowledge about this statistic could in turn stem from different sources. For instance, the

principal might have superior information and publicly announce the mean valuation before

the contest opens; or agents may use as a proxy the mean value that emerged in previous

rent-seeking games with similar prizes; or some external player (say an authoritative expert,

a think-tank, or a governmental agency) may publicly provide a valuation of the prize that

thus becomes a natural focal point agents will use to attribute a valuation to their rivals.3

We explicitly solve the model for the case of constant returns to scale success function

and obtain closed-form solutions for the agent’s optimal level of investment, as well as for his

perceived and actual probability of winning and expected profits in equilibrium. We subject

these results to comparative statics analysis and investigate the issue of rent dissipation and

entry in the game. We find that in equilibrium an agent dissipates in rent-seeking activities

at most 25% of his valuation. This upper bound is constant: we show that it does not

depend on the agent’s type, on how this compares with the mean value, and on the number

of potential participants. Concerning entry, we find that an agent invests a strictly positive

amount if and only if his private valuation is above a certain threshold that we analytically

pin down. In particular, we show that a “strong”player (i.e., a player whose valuation is

above the average) always participates while a “weak”player decides to participate or not

depending on the number of competitors. While existing literature already highlighted how

asymmetric valuations may act as a barrier to entry (Hillman & Riley, 1989; Stein, 2002),

our analysis shows how the combination of heterogeneity and imperfect information can

sometimes exacerbate and sometimes contrast this effect.

The remainder of the paper is organized as follows: Section 2 introduces the model and

derives agents’optimal level of investment. Section 3 performs some comparative statics

exercises on equilibrium results. Section 4 investigates the issue of rent dissipation on the

individual and the aggregate level. Section 5 compares the results of the model with those

that would emerge in a context of perfect information. Section 6 presents our conclusions.

3Concerning this last point, many countries recently set up specific agencies (both at the national and at
the local level) whose task is to provide so-called standard costs (i.e., mean valuation) for the supply to the
public sector of goods and services that are assigned through procurement auctions.
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2 The model

Consider a rent-seeking game in which n ≥ 2 risk neutral players compete to win a prize.

Players’valuations of the prize are heterogeneous and vi ∈ [0, vmax] indicates the valuation

of player i ∈ N with N = {1, ..., n}. The actual realization of vi is agent i’s private informa-

tion. It is instead common knowledge that all valuations are identically and independently

distributed according to an unspecified and unknown probability distribution with mean v̄.

Players can exert effort (or devote resources) in order to influence their chances of win-

ning the prize. Call xi ∈ [0, vi] the effort chosen by player i (we measure effort in units

commensurate with the rent) and let the vector x = (x1, ..., xn) collect the choices of all

the players. The probability Pi(x) with which a generic player i wins the prize follows the

famous logit specification originally proposed by Tullock (1980). In particular, and in order

to obtain closed-form solutions (see Stein, 2002), we adopt the formulation that features

constant returns to scale such that Pi(x) = xi
xi+

∑
j 6=i xj

.4 We also assume that Pi(x) = 1
n if

x = (0, ..., 0).

Each player must simultaneously choose how much effort to exert. The optimal level,

which we label x̂i, is the one that maximizes a player’s expected payoff πi:

max
xi

πi(x) =

(
xi

xi +
∑

j 6=i xj

)
vi − xi (1)

In tackling this problem, player i does not know, nor he can infer, the levels of effort

that his opponents will choose. In fact, the optimal investment of generic agent j 6= i clearly

depends on the valuation vj (i.e., x̂j = x̂j(vj)), which is agent j’s private information.

The only information available to agent i is that all valuations are independently drawn

from a distribution with mean (or expected value) v̄. The agent thus necessarily sets x̂j =

x̂j(v̄) for any of his (n− 1) opponents. Therefore, from i’s point of view, problem 1 becomes:

max
xi

πi(x) =

(
xi

xi + (n− 1)x̂j(v̄)

)
vi − xi (2)

Player i can actually explicitly compute x̂j(v̄). Player i in fact not only assigns a valuation

4As is well known, a more general formulation of the success function is given by Pi(x) =
xri

xri+
∑
j 6=i x

r
j

where the parameter r > 0 measures the returns to scale of a player’s investment on effort. The rent-seeking
technology shows decreasing returns to scale if r ∈ (0, 1), constant returns to scale if r = 1, and increasing
returns to scale if r > 1.
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v̄ to every agent j 6= i, he also expects every other participant in the game to adopt a

similar behavior. More precisely, he expects any player j 6= i to attach a valuation v̄ to all

his opponents k 6= j. However, the set of these players includes agent i himself. In other

words, agent i ascribes to every agent j 6= i the same behavior that player j would adopt

in a rent-seeking game in which all the participants had a homogeneous valuation v̄. More

formally, agent i sets x̂j(v̄) = x′j(v̄) for any j 6= i where x′j(v̄) =
(
n−1
n2

)
v̄ is the equilibrium

solution of a standard rent-seeking game among n players with valuations vi = v̄ for any

i ∈ N .5 Player i’s problem thus becomes:

max
xi

πi(x) =

(
xi

xi + (n− 1)
(
n−1
n2

)
v̄

)
vi − xi (3)

Necessary and suffi cient conditions for an interior solution are:

∂πi(x)

∂xi
=

 (
n−1
n

)2
v̄(

xi +
(
n−1
n

)2
v̄
)2

 vi − 1 = 0 (4)

∂2πi(x)

∂x2
i

= −
2
(
n−1
n

)2
v̄(

xi +
(
n−1
n

)2
v̄
)3 vi < 0 (5)

One can immediately see that condition 5 is always verified. Therefore, solving condition 4

with respect to xi yields x̂i, the optimal level of investment of agent i:6

x̂i =
n− 1

n

√
v̄vi −

(
n− 1

n

)2

v̄ (6)

Note that x̂i > 0 if and only if vi > λ where λ =
(
n−1
n

)2
v̄. In other words, an agent

actively participates in the rent-seeking game (i.e., he invests a strictly positive amount)

if and only if his personal valuation is above a certain threshold λ. This threshold is an

increasing function of n and v̄. Still, the condition λ < v̄ always holds. This implies that

5The standard result x′j(v̄) =
(
n−1
n2

)
v̄ emerges as the solution to the following problem: maxxj πj(x) =(

xj
xj+

∑
k 6=j xk

)
v̄ − xj subject to vk = v̄ for any k 6= j.

6More precisely, problem 3 has at least a real solution whenever
(
n−1
n2

)
v̄vi 6= 0. In our context, such a

condition is always verified as all the terms in the product are strictly positive. The problem then actually
has two real solutions: x1

i = n−1
n

√
v̄vi −

(
n−1
n

)2
v̄ and x2

i = −n−1
n

√
v̄vi −

(
n−1
n

)2
v̄. Note that only the

first solution is meaningful given that x2
i is always negative. Therefore, x̂i = x1

i .
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a “strong”player (i.e., a player with a valuation vi ≥ v̄) always actively participates in the

game. On the other hand, a “weak”player may decide to participate (λ < vi < v̄) or not

(vi ≤ λ < v̄). In particular, and everything else being equal, a player of type vi < v̄ may

invest in rent-seeking activities if the game features only a few competitors but could instead

abstain if competition looks tougher.7

Combining the optimal solution to the profit maximization problem with the constraint

that defines active participation in the game, one obtains a player’s optimal strategy, defined

by the following proposition:

Proposition 1 Consider a rent-seeking game among n ≥ 2 players with heterogeneous and

private valuations vi and common knowledge about the mean valuation v̄. An agent’s optimal

investment strategy x∗i takes the following form:

x∗i =

 n−1
n

√
v̄vi −

(
n−1
n

)2
v̄ if vi >

(
n−1
n

)2
v̄

0 otherwise

3 Comparative statics and equilibrium results

In this section, we perform comparative statics exercises and investigate how an agent’s

optimal level of investment is influenced by the various parameters of the game. We then

study some more general properties that characterize the equilibrium solution.

Consider an agent of type vi > λ where, as defined above, λ =
(
n−1
n

)2
v̄. In line with

Proposition 1, agent i thus invests an amount x∗i = n−1
n

√
v̄vi −

(
n−1
n

)2
v̄ in rent-seeking

activities, with x∗i > 0. As a first observation, note that, whenever vi = v̄, the equilibrium

solution cleanly reduces to x∗i =
(
n−1
n2

)
v̄, which is the standard solution of a rent-seeking

game among n symmetric players of type v̄. The intuition is straightforward: in the model,

an agent attributes a valuation v̄ to all of his opponents and he also expects them to do

the same; it follows that an agent of type vi = v̄ behaves as if he was involved in a rent-

seeking game where all of the n players have a homogeneous valuation v̄. In other words,

the standard model à la Tullock (1980) is nested into our more general framework.

7Note, however, that a player that perceives himself as being very weak (that is, a player whose private
valuation is much lower than the mean value) may refuse to participate even when he faces a single opponent
(i.e., n = 2). This happens when the condition vi ≤ 1

4
v̄ holds. The fact that a player may be inactive even

when n = 2 is consistent with the analysis of Schoonbeek & Winkel (2006) while can never happen in models
of perfect information such as Nti (1999), where the two players always participate, or Stein (2002), where
non-entry of some player can occur only when n ≥ 3.
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Second, an agent’s optimal level of investment is an increasing function of his private

valuation. The marginal effect of vi on x∗i is given by
∂x∗i
∂vi

= 1
2n

v̄√
v̄vi

(n− 1), which is always

positive. Still, this marginal effect is decreasing since x∗i is a concave function of vi.
8 It

follows that x∗i is more sensitive to changes in vi when the agent’s valuation is low rather

than high.

Perhaps less intuitive is the fact that the marginal effect of v̄ on x∗i is non monotonic.
9

Whenever the mean valuation is below the threshold defined by ṽ = 1
4

(
n
n−1

)2

vi, an increase

in v̄ boosts the agent i’s equilibrium effort x∗i (although at a decreasing rate): as v̄ approaches

ṽ from below, agent i expects more aggressive rent-seeking from his opponents but he also

continues to perceive himself as the strongest player (v̄ < ṽ < vi). Therefore, he increments

his investment so as to maintain his good chances of winning the contest. On the contrary,

whenever v̄ > ṽ, an hypothetical further increase of v̄ has a negative (and progressively

stronger) effect on x∗i as agent i now expects a much tougher competition and thus adopts a

softer strategy. Indeed, as v̄ increases, the agent progressively lowers his equilibrium effort

up to the point of nullifying it as soon as v̄ >
(

n
n−1

)2

vi.

Finally, the marginal effect of n on x∗i is also potentially non monotonic. The effect

is given by ∂x∗i
∂n = 1

n3 (2v̄ + n
√
v̄vi − 2nv̄), which is a concave function that reaches its

maximum at ñ = −2v̄√
v̄vi−2v̄

. Therefore, if ñ ≤ 2, the condition ñ ≤ n certainly holds

and an agent’s optimal level of investment x∗i monotonically decreases with the number of

participants in the game. Whenever ñ > 2, equilibrium effort instead initially increases with

n but then monotonically decreases as soon as n > ñ.

The following figures illustrate the effects that vi (Figure 1.a), v̄ (Figure 1.b), and n

(Figure 1.c) have on agent i’s optimal level of investment x∗i in some specific examples.
10

8The second derivative is given by ∂2x∗i
∂v2i

= − 1
4n

v2

(vvi)
3
2

(n− 1) such that ∂2x∗i
∂v2i

< 0 for any vi.

9The marginal effect is given by ∂x∗i
∂v̄

=
(n−1)

2n
vi√
v̄vi
−
(
n−1
n

)2
such that ∂x

∗
i

∂v̄
> 0 for v̄ < ṽ while ∂x∗i

∂v̄
< 0

for v̄ > ṽ where ṽ = 1
4

(
n

n−1

)2
vi.

10For illustrative purposes in figure 1.c (as well as in the derivation of the marginal effect) the number of
players n is treated as a continuous variable.
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1.a) x∗i (vi) with n = 4, v̄ = 100 1.b) x∗i (v̄) with n = 4, vi= 50 1.c) x∗i (n) with vi= 50, v̄ = 80

It is also interesting to compute the probability with which agent i expects to win the

contest given his optimal investment strategy x∗i > 0 and his conjecture that x′j(v̄) =
(
n−1
n2

)
v̄

for any j 6= i. This probability is given by:

Pi

(
x∗i ,
{
x′j
}
j 6=i

)
= 1−

(
n− 1

n

)√
v̄

vi
(7)

with Pi

(
x∗i ,
{
x′j
}
j 6=i

)
∈ (0, 1). In particular, agent i’s perceived probability is ensured

to be strictly positive given that the condition Pi
(
x∗i ,
{
x′j
}
j 6=i

)
> 0 holds whenever vi >(

n−1
n

)2
v̄, which is the same constraint that defines active participation in the game (see

Proposition 1).11 Obviously, in equilibrium a player exerts positive effort only if his expected

profits (which we formally define below) are strictly positive and this necessarily requires

Pi

(
x∗i ,
{
x′j
}
j 6=i

)
to be positive.12

While one can immediately see that Pi
(
x∗i ,
{
x′j
}
j 6=i

)
is increasing with vi and decreasing

with n and v̄, it is interesting to note how expression 7 relates an agent’s expected probability

of winning to the concept of relative resolve, as introduced in Hurley & Shogren (1998a,

1998b). The relative resolve of agent i with respect to a generic agent j is defined as ρi =
√

vi
vj

and thus provides a measure of the relative strength of the player. In particular, agent i is

stronger (weaker) than j when ρi > 1 (ρi < 1). Expression 7 shows that Pi
(
x∗i ,
{
x′j
}
j 6=i

)
decreases with

√
v̄
vi
. It follows that agent i’s expected probability of winning increases with

ρi =
√

vi
v̄ , which can be interpreted as the relative resolve of player i with respect to his

11Here as well, our results subsume those that arise in a standard rent-seeking game with homogeneous

valuations and perfect information. Expression (7) shows in fact that Pi

(
x∗i ,
{
x′j

}
j 6=i

)
= 1

n
whenever

vi = v̄.
12A positive expected probability of winning is a necessary but not suffi cient condition to ensure active

participation of an agent. The probability of winning is in fact certainly positive for any strictly positive
level of effort xi > 0. Still, this probability and/or the agent’s valuation vi may be too small such that their
product (i.e., the agent’s expected revenues) may fall short of the cost of exerting effort and the agent thus
prefers not to participate.
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“representative rival”of type v̄.

Given the expected probability of winning defined in expression 7, one can also compute

an agent’s expected profits. These are given by πi
(
x∗i ,
{
x′j
}
j 6=i

)
= Pi

(
x∗i ,
{
x′j
}
j 6=i

)
vi− x∗i

and can thus be explicitly expressed as:

πi

(
x∗i ,
{
x′j
}
j 6=i

)
=

1

n2

(
n
√
vi − n

√
v̄ +
√
v̄
)2

(8)

Expected profits are thus strictly increasing with vi and, for the range of admissible para-

meters, strictly decreasing with v̄.13

With respect to the expected probability of winning as reported in expression 7, the

actual probability of winning (i.e., the probability that emerges in equilibrium when every

agent i ∈ N plays his optimal investment strategy x∗i ) may differ. The latter is given by:

Pi(x
∗) =

√
vi −

(
n−1
n

)√
v̄

√
vi − (n− 1)

√
v̄ +

∑
j 6=i
√
vj

(9)

which increases with vi, decreases with vj , and it is such that Pi(x∗) = 1
n when vi =

vj 6=i = v̄. The expected probability of winning (expression 7) and the actual probability

of winning (expression 9) agree only when (n − 1)
√
v̄ =

∑
j 6=i
√
vj , i.e., when the sum of

(the square root of) agent i’s expectations about his opponents’valuations equals the sum

of the (square root of the) actual valuations of agent i’s rivals. If this is not the case, then

agent i overestimates his probability of winning whenever he underestimates the aggregate

strength of his rivals
(

(n− 1)
√
v̄ <

∑
j 6=i
√
vj

)
and he underestimates his probability of

winning when the opposite holds true.

The following example illustrates all the results obtained so far in the context of a specific

rent-seeking game.

Example 1 Consider a rent-seeking game with four players with private valuations v1 = 36,

v2 = 25, v3 = 16, and v4 = 9. All players know that the mean valuation in the population is

v̄ = 16. Each player i ∈ N thus expects each one of his opponents to play x′j 6=1 = 3. In line

with Proposition 1, it follows that equilibrium levels of investment are x∗1 = 9, x∗2 = 6, x∗3 = 3,

13More precisely, function 8 is convex in v̄ and reaches its minimum πi (·) = 0 at v̄ =
(

n
n−1

)2
vi. Therefore,

whenever the participation constraint vi >
(
n−1
n

)2
v̄ holds (i.e., v̄ <

(
n

n−1

)2
vi), expected profits are positive

but strictly decreasing with v̄.

9



and x∗4 = 0 (the participation constraint requires vi > 9). Now, for illustrative purposes,

focus on player 2. The player expects to win the game with probability P2 (3, 6, 3, 3) = 2
5

(see expression 7), which implies an expected payoff of π2 (3, 6, 3, 3) = 4 (see expression 8).

Given that
∑

j 6=2

√
vj > (n − 1)

√
v̄ (i.e., 13 > 12), agent 2’s actual probability of winning

P1(9, 6, 3, 0) = 1
3 (see expression 9) is lower than his expected probability of winning as agent

2 slightly underestimates the total strength of his rivals.

4 Rent dissipation in equilibrium

We now investigate the issue of rent dissipation at the individual level (RDi) and at the

aggregate level (RD). We define rent dissipation at the individual level as the fraction of

an agent’s valuation that is invested in rent-seeking activities. In equilibrium, a player with

valuation vi thus dissipates an amount:

RD∗i =
x∗i
vi

=

(
n− 1

n

)( √
v̄
√
vi
−
(
n− 1

n

)
v̄

vi

)
(10)

Once again, this expression subsumes the results of the standard model with homoge-

neous valuations. In fact, when vi = v̄, expression 10 simplifies to RD∗i = (n−1)
n2 . As is

well known, this is a constant ratio that does not depend on vi. However, a part from this

specific case, expression 10 shows that in general RD∗i does depend on vi. In particular, rent

dissipation at the individual level is increasing in the agent’s valuation for vi < ṽi and de-

creasing for vi > ṽi where ṽi =
(
n−1
n

)2
4v̄.14 Similarly, and holding vi fixed, rent dissipation

is a concave function of v̄ that reaches its maximum at ṽ = 1
4

(
n
n−1

)2

vi.15 The shape of the

RD∗i function is driven by the behavior of x
∗
i that, as has been shown, is strictly concave in

vi and v̄.

One can also relate rent dissipation at the individual level with the relative resolve of

agent i with respect to the representative rival of type v̄. Defining the relative resolve of i

as ρi =
√
vi√
v̄
and rearranging expression 10 one obtains:

14The marginal effect is given by ∂RD∗i
∂vi

= − (n−1)

2n2v2i

(
2v̄ + n

√
v̄vi − 2nv̄

)
such that ∂RD∗i

∂vi
> 0 for vi <(

n−1
n

)2
4v̄ and ∂RD∗i

∂vi
< 0 for vi >

(
n−1
n

)2
4v̄.

15 In this case, the marginal effect is given by ∂RD∗i
∂v̄

=
(n−1)

n2vi

(
1
2
n vi√

v̄vi
− n+ 1

)
such that ∂RD∗i

∂v̄
> 0 for

v̄ < 1
4

(
n

n−1

)2
vi and

∂RD∗i
∂v̄

< 0 for v̄ > 1
4

(
n

n−1

)2
vi.
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RD∗i =

(
n− 1

n

)[
1

ρi
−
(
n− 1

n

)
1

ρ2
i

]
(11)

In equilibrium, RD∗i is thus first increasing and then decreasing with ρi. Rent dissipation

reaches its maximum for ρ̃i = 1
n (2n− 2), in which case RD∗i (ρ̃i) = 1

4 . Note that this

maximum is a constant that does not depend on the number of participants n. Therefore,

the amount that an agent is willing to dissipate in rent-seeking activities never exceeds 25%

of his valuation, no matter the value of his relative resolve (and thus the values of vi and v̄)

or the number of participants in the game.

To illustrate this peculiar result, the following graph depicts RD∗i as a function of ρi in

three different rent-seeking games that are characterized by n = 2, n = 4, and n = 100 (left

to right). In all cases, the participation constraint implies a positive investment x∗i > 0 for

ρi >
(
n−1
n

)
.

0 2 4 6 8 10
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0.15

0.20
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Figure 2: Examples of rent dissipation at the individual level.

In line with the literature (see, among others, Hurley & Shogren, 1998a, 1998b; Stein,

2002), we define rent dissipation at the aggregate level as the total expenditures by all the

players.16 Therefore, in equilibrium, RD∗ =
∑

i x
∗
i .

To obtain an explicit formulation for RD∗, one must consider that in equilibrium not

all the players necessarily invest a positive amount (see Proposition 1). We define the set

of active players as M =
{
i ∈ N | vi >

(
n−1
n

)2
v̄
}
, i.e., those agents that play x∗i > 0.

16Note in fact that whenever agents’valuations are heterogeneous, the sum of individual rent dissipations
(i.e.,

∑
iRD

∗
i ) makes no sense. Each RD

∗
i is in fact computed with respect to the agent’s specific valuation

vi.
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Therefore, M ⊆ N , or, equivalently, m ≤ n. Rent dissipation at the aggregate level is then

given by:

RD∗ =
∑

i∈M

[(
n− 1

n

)√
v̄vi

]
−m

(
n− 1

n

)2

v̄ (12)

RD∗ is thus weakly increasing and weakly concave in any individual valuation vi with

i ∈ N . The “weakness”of these relations stems from the fact that a small increase in the

valuation of an agent that does not participate (i.e., i /∈ M) may still not be enough to

convince him to actually invest a positive amount. If this is the case, then RD∗ obviously

would not change. On the contrary, the possible positive effect on total rent dissipation of

an increase in an individual valuation can flow through two channels: a higher vi pushes up

the optimal amount x∗i > 0 of an agent that would have invested anyway or a higher vi may

convince a player to enter the game and thus change his optimal strategy from x∗i = 0 to

x∗i > 0.

The effect of an increase of v̄ on RD∗ can instead go in both directions. A higher v̄

increases the threshold that defines entry. As such, it can negatively affect participation

and thus depress total rent dissipation. However, we also showed (see Section 3 and Figure

1.b) that the optimal level of investment of a participating player is not monotonic in the

mean valuation. In particular, x∗i first increases and then decreases with v̄. Therefore, the

net effect of a change of v̄ on RD∗ can be positive or negative.

We collect the results about rent dissipation in the following proposition.

Proposition 2 Consider a rent-seeking game among n ≥ 2 players with heterogeneous

and private valuations vi and common knowledge about the mean valuation v̄. Then, in

equilibrium, rent dissipation at the individual level (RD∗i =
x∗i
vi
) and the aggregate level

(RD∗ =
∑

i x
∗
i ) is such that:

- RD∗i is a concave function of vi, v̄, and ρi that reaches its global maximum respectively

at ṽi =
(
n−1
n

)2
4v̄, ṽ = 1

4

(
n
n−1

)2

vi, and ρ̃i = 1
n (2n− 2).

- RD∗i ∈
[
0, 1

4

]
for any vi, v̄, ρi, and n.

- RD∗ is weakly increasing and weakly concave in any vi.
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5 A comparison with the perfect information case

To highlight how the specific form of imperfect information that we have modeled influences

players’behaviors, we compare our results with those that would emerge in a context of

perfect information. We use the results that appear in Stein (2002) as a benchmark.

Stein (2002) studies a rent-seeking game among n ≥ 2 players with heterogeneous and

publicly known valuations and derives explicit solutions for the case of constant returns to

scale success function. Therefore, the only difference between Stein’s model and our model

lies in the different information structure agents can rely on. Stein (2002) finds that the

optimal strategy of generic agent i ∈ N takes the following form:

x∗Stein02
i =


(p−1)Φp

p

[
1− (p−1)Φp

pvi

]
if i ≤ p

0 otherwise
(13)

where p ∈ {1, ..., n} is the largest number for which the condition vp > (p−1)
p Φp holds

(players are ordered in terms of their valuations such that v1 ≥ v2 ≥ ...vn > 0) and Φp =[
1
p

∑
i≤p

1
vi

]−1

is the harmonic mean of the first p values of {vi}i∈N . In equilibrium, rent

dissipation at the aggregate level is given by RD∗Stein02 = [(p− 1)Φp] /p and the relation

vp+1 ≤ RD∗Stein02 < vp always holds.

Note that in the special case of homogeneous valuations, Stein’s solution reduces to the

standard solution (Tullock, 1980). In fact, when vi = v for all i ∈ N , then p = n and Φp = v.

Therefore, x∗Stein02
i =

(
n−1
n2

)
v. We have already shown in Section 3 that also our solution

(see Proposition 1) simplifies to the standard one as x∗i =
(
n−1
n2

)
v̄ when vi = v̄. Therefore,

both Stein’s model and our model subsume the standard framework of a symmetric rent-

seeking game with common knowledge and they thus lead to the same solution under those

specific assumptions.

However, apart from this peculiar case, the two models usually differ both in terms of

individual optimal investment and rent dissipation. To highlight these aspects, consider a

slight generalization of the situation presented in Example 1. In particular, let n = 4 with

v1 = 36, v2 = 25, v3 = 16, v4 ∈ (0, 100], and v̄ = 16. Figure 3.a below shows how the

optimal level of investment of player 4 changes as a function of his own valuation in the

two models. Figure 3.b illustrates instead the evolution of rent dissipation at the aggregate

level.

13



0 20 40 60 80 100
0

10

20

0 20 40 60 80 100
0

10

20

30

40

3.a) x∗4 (thin) and x
∗Stein02
4 (thick) 3.b) RD∗ (thin) and RD∗Stein02 (thick)

Focusing on Figure 3.a, the pattern of the two functions appears to be qualitatively

similar. The only noticeable difference concerns the threshold that triggers the agent’s entry:

in Stein’s model, agent 4 invests in rent-seeking activities when his valuation is such that

v4 > 15.352; in our model, entry occurs for v4 > 9. The reason for this different threshold

is that in our framework agent 4 assigns a valuation of v̄ = 16 to any of his opponents.

Therefore, the agent underestimates the actual strength of his opponents, expects to face

less fierce competition, and thus more easily enters the game.

Still, there is a more subtle difference between the two models. The two information

structures can in fact lead to a different number of active players and this can in turn

have important implications for the aggregate level of rent dissipation. The following table

reports the number m ≤ n and the identity of the agents that invest a positive amount in

rent-seeking activities in the two models, as v4 varies in the interval (0, 100].

Our model Stein02 model

m active pl. m active pl.

v4 ∈ (0, 9] 3 {1, 2, 3} 3 {1, 2, 3}

v4 ∈ (9, 15.132] 4 {1, 2, 3, 4} 3 {1, 2, 3}

v4 ∈ (15.352, 16] 4 {1, 2, 3, 4} 4 {1, 2, 3, 4}

v4 ∈ (16, 81.818] 4 {1, 2, 3, 4} 3 {1, 2, 4}

v4 ∈ (81.818, 100] 4 {1, 2, 3, 4} 2 {1, 4}

Table 1: number and identity of active players in the rent-seeking game.

With respect to the perfect information benchmark, the specific form of imperfect infor-

mation that we have modeled influences therefore not only the individual optimal investment

strategies but also the number of participating players. It follows that the differences be-
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tween the two models in terms of total rent dissipation (Figure 3.b) are more pronounced

with respect to those that emerge at the level of the individual equilibrium strategy (Figure

3.a).17

6 Conclusions

We have studied some properties of rent-seeking games characterized by the lack of common

knowledge about players’heterogeneous types. More precisely, we investigated a framework

plagued by a severe form of imperfect information: in addition to the knowledge of their

own type, agents only know that all valuations are drawn from an unknown distribution

with mean v̄. The key passage of the model is that a player necessarily uses this summary

statistic not only to attach a valuation to his rivals but also to attribute a beliefs system to

them. This allows participants to conjecture/approximate the level of effort that the other

players will exert and thus to implement the investment strategy that best responds to such

a conjecture.

Focusing on contests with a constant return to scale, we obtained closed-form solutions

for agents’optimal level of effort as well as for the amount of rent dissipation that emerges in

equilibrium. Comparative statics analysis then led to some interesting results. We showed,

for instance, that an agent’s optimal level of investment is not monotonic in the mean

valuation v̄ and that the amount that an agent dissipates in rent-seeking activities is bounded

above by a threshold that is independent of the agent’s valuation, his degree of relative

resolve, and the number of opponents.

In general, we have highlighted how agents’behaviors and equilibrium results may be

shaped by small pieces of shared information that become focal among all participants.

This consideration opens interesting paths for future research. For instance, it suggests the

possibility that a principal may try to strategically release some specific information (say

some selected summary statistics) with the goal of influencing some of the outcomes of the

game such as the number of active players or the aggregate level of rent dissipation.

17Obviously, the results illustrated in Figures 3.a and 3.b are specific to the example being examined
and cannot be generalized. For instance, the situation would be reversed (i.e., agent 4 would more easily
enter the game and aggregate rent dissipation would be higher in a context of perfect information) if players
overestimate the actual strength of their opponents (for instance, if v̄ = 30).
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