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Abstract

We consider the problem of maximizing expected lifetime utility from
consumption of a generalized geometric Brownian motion in the presence
of controlling costs with a fixed component. Under general assumptions
on the utility function and the intervention costs our main result is to
show that, if the discount rate is large enough, there always exists an
optimal impulse policy for this problem, which is of a Markovian type.
We compute explicitly the optimal consumption in the case of constant
coefficients of the process, linear utility and a two values discount rate. In
this illustrative example the value function is not C1 and the verification
theorems commonly used to characterize the optimal control cannot be
applied.

Keywords: Stochastic Programming; Markov processes; Impulse control; Quasi-
variational inequalities; Consumption-investment problems with fixed interven-
tion costs

1 Introduction

In this paper we consider the optimal consumption of a diffusion process St,
which is a generalization of the geometric Brownian motion. The evolution of
St, in absence of control, is described by the Itô’s stochastic differential equation

dSt = Stµ(St)dt+ Stσ(St)dBt (1)

where Bt is a one-dimensional Brownian motion and the functions µ and σ are
assumed to be bounded and Lipschitz continuous. Starting from an initial value
S0 > 0 the process St remains positive for all t, and if µ, σ are constant we have
the standard geometric Brownian motion. The agent wants to maximize the
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expected utility from consumption of S over an infinite horizon. Consumption
is possible at any time but whenever S is consumed some quantity of S is lost as
an intervention cost. This cost has a minimum fixed amount F , and (possibly)
a variable part which can depend on the size of the intervention. Because of
the fixed cost F , consumption cannot be done in a continuous way without
incurring infinite costs: it is made by finite amounts in separate time instants.
We have a problem of impulse control where a control policy is a sequence (τi, ξi)
of stopping times and corresponding random variables ξi, where ξi represents
the decrease in S due to the intervention in τi. We will denote by K(ξ) the
intervention costs related to a displacement of size ξ. If at time τi the agent
consumes the amount ci ≥ 0 then the level of S becomes

S(τi) = S(τi
−)− ξi

where S(τ−i ) is the amount of S just before τi and ξi = ci + K(ξi) > 0 is
the sum of consumption and intervention costs (ξi is strictly positive because
K(ξ) ≥ F > 0). The objective is to maximize the discounted expected utility
from the (possibly) infinite sequence of interventions

E [

∞∑
i=1

U(ci) e
−
τi∫
0

β(St)dt
]

where U is the agent’s utility function and β(St) is the discount rate, which
can depend on the current level St. Of course if there was no upper limit in
the possible amount of c, then an agent with an unbounded U could obtain
infinite utility by consuming immediately an unlimited quantity of S. So we
will assume the natural constraint that a policy is admissible only if the level of
S, after consumption, never becomes negative. For a real application, one may
think of S as a financial asset with limited liability, such as a stock or an index
fund, whose value evolves according to equation (1) and therefore randomly
but with no risk of default. The investor wants to maximize the discounted
expected utility from the liquidation of S, but whenever he sells some quantity
of S he must pay fixed and proportional transaction costs. The nonnegativity
constraint on S means in this case the prohibition to take short positions.

The main focus of this paper will be on proving the existence of an optimal
policy and to characterize its form, under general assumptions on the functions
µ, σ, β, K, U . Indeed our main result, Theorem 10 and Corollary 11, shows that
if the discount rate β(S) is sufficiently large with respect to U , µ and σ, then
there always exists the optimal consumption. This optimal policy is Markovian
and it is characterized by a control region, a complementary continuation region
and a set of optimal actions to implement in the control region. The regions
and the optimal consumption can be obtained by solving a static optimiza-
tion problem. To study our problem we will follow the Dynamic Programming
methodology. In impulse control theory the value function is shown to be a
solution of a quasi-variational inequality (QVI) which plays the same role of the
Hamilton-Jacobi-Bellman equation for continuous stochastic control. It is well
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known that the value function is not usually a classical C2 solution of this in-
equality, and some kind of weak solution must be considered. The most general
type of weak solution is certainly the so called viscosity solution, which allows
the value function to be even discontinuous (see, for some instances of discontin-
uous value functions and viscosity solutions, [14] chapter 7, [18], [2]). However
the viscosity characterization does not seem of help in showing the existence of
an optimal policy. To the best of our knowledge the optimal impulse control is
usuallly obtained by applying some ”verification theorems” which presume the
existence of a sufficiently regular solution of the QVI (at least a C1solution: see,
for instance, [6], [21], [22], [11]). We will investigate our model using a varia-
tional approach and we will characterize the value function as a weak solution
in a weighted Sobolev space. The main advantage of this type of weak solution
is that some fundamental results of stochastic calculus, such as the Ito’s for-
mula and the Dynkin’s formula, can be extended to generalized derivatives, if
these generalized derivatives are ordinary functions. Consequently it is possible
to prove the existence of an optimal control without assuming a continuously
differentiable value function and even without making use of the dynamic pro-
gramming principle. In section 5 of the paper we will give an example where
the value function is not C1, but it is possible to characterize the optimal im-
pulse consumption. Our results are based on the functional analysis techniques
for stochastic control developed in the monographs of Bensoussan and Lions
[4], [5]. Nevertheless the problem we study is different from the impulse con-
trol problem studied in [5], chapter 6. The authors considered a process with
bounded coefficients and a cost minimization problem where the value function
is naturally bounded from below and there is a trade-off between running and
controlling costs. This is the most common formulation of the impulse con-
trol problem (see, for instance, [1], [3], [12], [15]). In this paper we consider a
generalized geometric Brownian motion and our objective has no additive sep-
aration between the utility of consumption and the controlling costs. Moreover
we face a state constrained maximization problem and the value function is not
necessarily finite. The problem is also different from some recent models con-
cerning the optimal distribution of dividends by a firm (see [17], [8], [9]). Since
in these models insolvency has always a positive probability to occur, the firm
must find the optimal balance between paying more dividends and maintaining
enough liquidity to reduce the risk of default. Our setting is more similar to a
Merton’s model (see [20]), with only one risky asset and in the presence of fixed
transaction costs. Indeed the general asset price dynamics considered in [20],
section 3 and 4, is the same of equation (1). However the fact that the agent
consumes in a discrete way, at an infinite rate by finite amounts in separate time
instants, changes the nature of the problem and its solution. The concavity of
the utility function is no longer necessary to obtain an optimal policy; on the
contrary it is necessary to set a lower bound constraint on the level of S. If the
utility is linear and µ, σ, K, β are constant, it can be shown that the model
degenerates to an optimal stopping problem (see Remark 16, in section 5). But
when µ, σ, K, β are not constant and we consider various utility functions,
a wide range of different solutions is possible. The paper is organized as fol-
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lows. Section 2 contains the precise problem formulation and some preliminary
results, including a logarithmic transformation that is convenient in order to
solve our model. In section 3 of the paper we show the existence of an optimal
control for the optimal stopping problem which arises when only one interven-
tion is allowed. Sections 4 contains our main results: the characterization of the
value function and the existence and characterization of the optimal impulse
control. We obtain these results by reducing our model to an iterative sequence
of optimal stopping problems and corresponding variational inequalities. This
idea, first introduced in [5], has been used, for instance, in [10], [1], [2], to solve
numerically some impulse control problems in mathematical finance. In section
5 we consider the simple case where the utility is linear, µ, σ, K are constant
but there are two possible values for β, depending on the size of S. We show
that the value function is not continuously differentiable and that the optimal
policy is an impulse control with one barrier and one target level, which can be
computed explicitly. Section 6 concludes the paper with some final remarks.

2 Problem formulation and preliminary results

We consider a standard probability system (Ω, F, P,F, Bt) , where Bt is a one-
dimensional Brownian motion and F =Ft is the completed natural filtration of
Bt. We call a generalized geometric Brownian motion S(t) : [0,∞) × Ω → R
on this system, the strong solution of the Itô stochastic differential equation (1)
where we assume

S0 > 0, µ(S), σ(S) ∈W 1,∞(R) . (A1)

Here W 1,∞(R) is the Sobolev space defined, in the sense of distributions, by

W 1,∞(R) ≡ {f ∈ L∞ | f ′(x) ∈ L∞}

and it is equivalent in R with the functions which are bounded and Lipschitz
continuous (in all the sequel the apex denotes a weak derivative). There cer-
tainly exists a unique strong solution to (1) because the coefficients Sµ(S) and
Sσ(S) are locally Lipschitz and satisfy a linear growth condition (see, for in-
stance, Theorem 4.3.1 in Ikeda and Watanabe [16]). We make the following
assumptions on the intervention costs K(ξ)∣∣∣∣∣∣

K(ξ) : R+ → (0,+∞) is upper-semicontinuous
K(ξ) ≥ K(0) = F > 0
ξ −K(ξ) ≥ 0 if and only if ξ ≥ ξmin > 0 .

(A2)

Here ξmin is the minimum intervention necessary to obtain the non-negative
consumption c = ξ −K(ξ). An impulse control p = {(τ1, ξ1); .....; (τi, ξi); ...} is
a sequence of stopping times τi and corresponding random jumps ξi enforced
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into the system. We say that a policy is feasible if it verifies∣∣∣∣∣∣
τi is a {Ft} stopping time
τi ≤ τi+1 a.s.
τi →∞ a.s. when i→∞

(2)

∣∣∣∣ ξi is Fτi measurable
ci ≡ ξi −K(ξi) ≥ 0 .

(3)

For a given policy p and initial state S0, the controlled process Sp(t) can be de-
fined, in a concise way, by the unique solution of the following integral equation
(see [5], chapter 6)

Sp(t) = S0 +

∫ t

0

Sp(r) µ(Sp(r)) dr +

∫ t

0

Sp(r) σ(Sp(r)) dBr − ξ1 − ......− ξαt

where αt(ω) = max {n | τn(ω) ≤ t}.
We will consider admissible only the feasible policies which verify the non-
negativity constraint

Sp(t) ≥ 0, ∀t ≥ 0

which implies, ∀i ≥ 1,
Sp(τ

−
i )− ξi − ..− ξαi ≥ 0

where Sp(τ
−
i ) = lim

t↑τi
Sp(t) and αi(ω) = max {n ≥ i | τn = τi }.

We denote by AS0 the set of admissible policies when the process starts in S0.
To each p we associate a discounted rewarding functional

J(p) = E [

∞∑
i=1

U(ci) e
−
τi∫
0

β(St)dt
χτi<∞] (4)

where χτi<∞(ω) =

{
1 if τi(ω) <∞
0 elsewhere .

We make the following assumptions on the utility function∣∣∣∣ U(c) : R+ → R+ is increasing and upper-semicontinuous
U(c) ≥ U(0) = 0, U(c) ≤ a cb where a, b > 0 .

(A3)

Thus U is not necessarily concave but it satisfies a polynomial growth condition.
We assume that the discount rate β verifies

β ∈ L∞, β(S) ≥ βmin > 0 . (A4)

Moreover we will assume that β is large enough, for S → +∞, with respect to
U , µ, σ, in the sense that there exists Ŝ > 0 such that β verifies

β ≥ 1

2
σ2b̄2 + (µ− 1

2
σ2)b̄, ∀S ∈ [Ŝ,+∞) (A5)
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where b̄ is defined by b̄ ≡ 1 ∨ b ≡ Max(1, b). To obtain some of our results we
will require that this assumption holds in a strict way, that is there exists a
constant D > 0 such that

β − 1

2
σ2b̄2 + (µ− 1

2
σ2)b̄ ≥ D > 0, ∀S ∈ [Ŝ,+∞) . (A6)

Now we define the value function

V (S) = sup
p∈AS

J(p)

and the problem is to look for the existence of an optimal control p∗(S0), for
every initial state S0, such that we have

V (S0) = Max
p∈AS0

J(p) = J(p∗(S0)) . (P)

Since the variational techniques we will use require to consider a process
with bounded coefficients, it is convenient to work with the natural logarithm
of the process S(t). We define the functions

ζ(x) = µ(ex), δ(x) = σ(ex), ρ(x) = β(ex) . (5)

From (A1), (A4) and (5) it follows ζ(x), δ(x) ∈W 1,∞
loc (R) ∩ L∞(R), and

ρ(x) ∈ L∞(R), ρ(x) ≥ ρmin = βmin > 0. We consider the auxiliary process
xv(t), controlled by policy v = (θi, γi), defined as the solution of

xv(t) = x0 +

∫ t

0

(ζ(xv(r))−
1

2
δ2(xv(r))) dr +

∫ t

0

δ(xv(r)) dBr − γ1 − ......− γεt

where εt(ω) = max {n(ω) | θn(ω) ≤ t}. The stopping times θi must meet the
same requirements (2) of the τi. Now we define the functions∣∣∣∣ d(x, γ) = ex − ex−γ

g(x, γ) = d(x, γ)−K(d(x, γ))
(6)

where d, g : R × R∗+ → R. Let xmin ≡ ln ξmin and γxmin ≡ x − ln(ex − ξmin).
Note that we have g(x, γ) ≥ 0 if and only if x ≥ xmin and γ ≥ γxmin > 0. We
will consider admissible the random variables γi > 0, (which can take the value
γi = +∞, in which case xv(t) = −∞, ∀t ≥ θi), if they verify∣∣∣∣ γi is Fθi measurable

g(xv(θ
−
i ), γi) ≥ 0 .

To policy v it is associated the rewarding index

I(v) = E [

∞∑
i=1

U(g(xv(θ
−
i ), γi)) e

−
∫ θi
0 ρ(xt)dtχθi<∞] (7)
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and we consider the auxiliary problem

Max
v∈Γx0

I(v) (A)

where Γx0
is the set of admissible policies if xv(0) = x0. Let Φ(x) be the value

function of problem (A)
Φ(x) = sup

v∈Γx

I(v) .

The following lemma shows the equivalence between (A) and our original prob-
lem.

Lemma 1 If S0 = ex0 and if we set τi = θi, ξi = d(xv(θ
−
i ), γi), ∀i ≥ 1, then the

processes Sp(t) and exv(t) are equal almost surely and J(p) = I(v). Moreover
V (S0) = Φ(lnS0) and if there exists an optimal v∗ = {(θ∗i , γ∗i )} for problem (A)
then p∗ =

{
(θ∗i , d(xv(θ

∗−
i ), γ∗i ))

}
is optimal for problem (P), and vice versa.

Proof. By Itô’s formula applied to exv(t) up to τ1 = θ1 the processes exv(t)

and Sp(t) are equal a.s. in [0, τ1). In τ1 = θ1 we have

exv(τ1) = exv(τ−1 )−γ1 = exv(τ−1 ) − d(xv(θ
−
i ), γi) = Sp(τ

−
1 )− ξ1

and consequently y(τ1) = Sp(τ1). It is immediate to see recursively that
exv(t) = Sp(t), a.s., ∀t ≥ 0. Setting θi = τi, ξi = d(xv(θ

−
i ), γi) a policy p ∈ AS0

if and only if v ∈ ΓlnS0 , and since, by this correspondence,

U(g(xv(θ
−
i ), γi)) e

−
∫ θi
0 ρ(xt)dt = U(ξi −K(ξi)) e

−
∫ τi
0 β(St)dt

we also have J(p) = I(v). Therefore it follows V (S0) = Φ(lnS0) and if
v∗ = {(θ∗i , γ∗i )} verifies I (v∗) = Φ(lnS0) then p∗ =

{
(θ∗i , d(xv(θ

∗−
i ), γ∗i ))

}
verifies J(p∗) = V (S0) and vice versa.

Remark 2 The utility of the logarithmic transformation is twofold. The process
x(t) has bounded coefficients, and therefore it is possible to use the variational
techniques. Furthermore (A) is a free optimization problem since there is no
lower bound constraint on the state variable x. The only drawback is that the
objective functional (7) is slightly more complex with respect to (4) because it
also contains the left limits of xv at the intervention times θi. Note that the
connection between the two problems lies in the definitions (5), (6) and that
problem (A) is not well posed for arbitrary functions d and g.

Thus we can focus on problem (A), under (5), (6) and assumptions (A1)-
(A6), since its solution will give us immediately the optimal policy of our original
problem. Since the value function may be unbounded in R it is convenient to
characterize Φ(x) as a solution of a variational problem in a weighted Sobolev
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space. We consider the regular weight function wα(x) = e−α
√

1+x2
(α > 0) and

the weighted spaces Lp,α(R), W 1,p,α(R), W 2,p,α(R), defined as∣∣∣∣∣∣∣∣
Lp,α(R) =

{
f |
∫
wpα(x) |f |p dx <∞

}
W 1,p,α(R) = {f ∈ Lp,α | f ′(x) ∈ Lp,α}

W 2,p,α(R) = {f ∈ Lp,α | f ′(x), f ′′(x) ∈ Lp,α} .

In particular we have the Hilbert spaces H0,α = L2,α, H1,α = W 1,2,α,
H2,α = W 2,2,α. We will denote by∣∣∣∣∣ (u, v)α =

∫
R
u v w2

α dx

(u, v)H1,α =
∫
R
u v w2

α dx+
∫
R
u′ v′ w2

α dx

the inner products in H0,α and H1,α and by |u|α ||u||α the corresponding norms.
We also define the functions

a2 =
δ2

2
, a1 = −(ζ − δ2

2
) + a′2 .

For technical reasons we need the following additional assumption on the diffu-
sion coefficient ∣∣∣∣ σ(x) ≥ λ > 0

σ(ex) = δ(x) ∈W 1,∞(R) .
(A7)

The former of (A7) is a non-degeneracy assumption typical of the variational
approach (see, however, [19] for a treatment of degenerate diffusions). From this

assumption it follows a2 ≥ λ2

2 > 0 and from (A1), (5) and the latter of (A7) we
deduce a2 ∈ W 1,∞(R) and a1 ∈ L∞(R). We define a second order differential
operator A by

Au = −a2u
′′ − a′2u′ + a1u

′ + ρu (8)

which corresponds to the infinitesimal generator of the process x(t). We will
consider frequently the following continuous bilinear form in H1,α

aα(u, v) =

∫
R
a2 u

′v′ w2
α dx+

∫
R

(a1 −
2a2 xα√

1 + x2
) u′v w2

α dx+

∫
R
ρ u v w2

α dx.

Since ρ is given aα(u, v) is not necessarily coercive, but choosing ϑ > 0 large
enough, the bilinear form aα(u, v) + ϑ (u, v)α becomes coercive on H1,α. It can
be easily shown, integrating by parts, that if u ∈ H2,α and v ∈ H1,α, then we
have ∫

R
(Au) v w2

αdx = aα(u, v) . (9)

Consider now two stopping times τ, τ ′ (w.r.t. Ft), such that 0 ≤ τ ≤ τ ′ a.s.,
and z(t) the strong solution of the following equation

z(t) = η +

∫ t

0

γ(z(s)) χs>τ ds+

∫ t

0

δ(z(s)) χs>τ dBs
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where η is Fτ measurable, z = η for 0 ≤ t ≤ τ and γ, δ ∈W 1,∞
loc (R) . We denote

by Ir the open interval (−r, r) and by τr ≡ inf {t ≥ τ | z(t) /∈ Ir} the first exit
time after τ of the process z from Ir. In the sequel we will use frequently the
following Lemma. Taking the mathematical expectation in (10) one obtains a
generalization of Dynkin’s formula in H2,α(R).

Lemma 3 If u ∈ H2,α(R) then we have, ∀r > 0,

u(z(τ))χτ<∞ =

= E[
τ ′∧τr∫
τ

χτ<∞(Azu(z(s)) e
−

s∫
τ

ρ(z(t))dt
ds+ u(z(τ ′ ∧ τr))e

−
τ′∧τr∫
τ

ρ(z(t))dt
) |Fτ ]

(10)

where Azu = − δ
2

2 u
′′ − γu ′ + ρu.

Proof. The proof is omitted because this Lemma is an adaptation of some
results of chapter 6, in [5]. See, in particular, Lemmas 6.1.1-6.1.2, Corollary
6.1.1 and Theorem 6.1.2.

3 Study of a variational inequality and of the
associated optimal stopping problem

In this section we consider the simplified case when it is possible to stop the
process x(t), and consequently S(t), just one time. It corresponds to set
θ2 = +∞ in the previous formulation. A control is now a couple v = (θ, γ) of
a {Fθ} stopping time θ and a random variable γ which is Fθ measurable. The
control is admissible if it verifies g(x(θ−), γ) ≥ 0. The value function is

Φ1(x) ≡ sup
v∈Γ1,x

I(v) = sup
(θ,γ)∈Γ1,x

E [U(g(x(θ−), γ)) e−
∫ θ
0
ρ(xt)dtχθ<∞]

where Γ1,x0 is the set of admissible stopping policies when only one intervention

is permitted. From (A5) and (5) it follows that there exists x̂ = ln Ŝ such that
ρ verifies (b̄ = b ∨ 1)

ρ ≥ 1

2
δ2b̄2 + (ζ − 1

2
δ2)b̄, ∀x ∈ [x̂,+∞) . (11)

Now we define a function uM that we will use as an upper bound for Φ1(x) and
Φ(x). Let N ≥ a and C > 0 be large enough to verify∣∣∣∣∣∣

a(x− F )b ≤ Nxb̄, ∀x ≥ F

Neb̄x(ρ− 1
2δ

2b̄2 − (ζ − 1
2δ

2)b̄) + ρminC ≥ 0 ∀x ∈ R .

(12)

We define
uM (x) = C +Neb̄x . (13)
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We also consider a function ψ(x) which represents, for x ≥ xmin, the maximum
utility we get if we stop immediately the process in x0 = x

ψ(x) =


sup

γ∈[γxmin,+∞]

U(g(x, γ)) if x ≥ xmin

g(x,+∞) if x < xmin .

(14)

It is always Φ1(x) ≥ ψ(x) and we have ψ(x) ∈ L2,α if α > b. The following
theorem shows some properties of ψ(x).

Theorem 4 Given assumptions (A2), (A3), the function ψ(x) verifies:

1) −F < ψ(x) ≤ uM (x)

2) ψ(x) is continuous

3) there exists a Borel measurable function γ∗(x) : [xmin, ∞)→ R such that
(0, γ∗(x)) ∈ Γ1,x and ψ(x) = U(g(x, γ∗(x))) for x ≥ xmin.

Proof. It is as a particular case of the proof of the subsequent theorem 7,
setting u = 0 in (29).

Let us define the set of functions

Z =
{
z ∈ H1,α | 0 ≤ z ≤ uM

}
(15)

and the following variational inequality, where ϕ ∈ L2,α and α > b
aα(u, v − u) ≥ 0

∀v ∈ H1,α such that v ≥ ϕ

u ∈ Z, u ≥ ϕ .

(16)

The next theorem shows that if the discount rate ρ verifies (11) there always
exists a minimum solution of (16).

Theorem 5 Given assumptions (A1), (A4), (A5), (A7), ϕ ∈ L2,α, ϕ ≤ uM

the variational inequality (16) has a minimum solution uϕ(x).

Proof. We consider the following auxiliary variational inequality aα(u, v − u) + ϑ(u, v − u)α ≥ (ϑz, v − u)α
∀v ∈ H1,α such that v ≥ ϕ
u ∈ H1,α, u ≥ ϕ

(17)

where z ∈ L2,α and ϑ > 0 is large enough to make aα(u, v) + ϑ (u, v)α coercive
in H1,α. It follows that there exists a unique solution uz in H1,α of (17), (see
theorem 1.13, chapter 3, Bensoussan and Lions [4]). We show now that

z ∈ Z =⇒ uz ∈ Z. (18)
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From (8), the latter of (12) and (13) we deduce AuM ≥ 0 and from (9) it follows
that

aα(uM , v) =

∫
R

(AuM )vw2
αdx ≥ 0

whenever v ∈ H1,α and v ≥ 0. If we choose u = uz and v = uz − (uz − uM )+ in
(17), which is an admissible test function because ϕ ≤ uM , we get

−aα(uz, (uz − uM )+)− ϑ(uz, (uz − uM )+)α ≥ −(ϑz, (uz − uM )+)α .

If we add aα(uM , (uz −uM )+) ≥ 0 to the left side and (ϑuM , (uz −uM )+)α ≥ 0
to both sides of this inequality we obtain

−aα(uz−uM , (uz−uM )+)−ϑ(uz−uM , (uz−uM )+)α ≥ ϑ(uM−z, (uz−uM )+)α

which is equivalent to

aα((uz − uM )+, (uz − uM )+) + ϑ((uz − uM )+, (uz − uM )+)α ≤

≤ −ϑ(uM − z, (uz − uM )+)α .

Since by assumption uM ≥ z and aα(u, v) +ϑ (u, v)α is coercive, this inequality
implies (uz − uM )+ = 0 that is to say uz ≤ uM . Moreover u = 0 is the solution
of (17) if z = 0 and ϕ ≤ 0 and therefore uz ≥ 0 because uz is increasing in z
and ϕ, and z ≥ 0 and ϕ ≥ −ϕ−. Therefore we have shown the implication (18).
Now, we can define an operator G : Z → Z such that uz = Gz. From the
monotonicity properties of the solution of variational inequalities (see theorem
1.4, chapter 3, in [4]) it follows that Gz1 ≤ Gz2 if z1 ≤ z2. Thus we can consider
the increasing sequence of functions{

un = Gun−1

u0 = 0 .
(19)

The sequence un converges in L2,α to a function uϕ ∈ Z, with uϕ ≥ un ≥ ϕ by
construction, and we aim to show that uϕ is the minimum solution of (16). If
we set v = uM in (17), which is always admissible, we obtain

aα(un, un) + ϑ(un, un)α ≤ aα(un, u
M ) + ϑ(un, u

M )α − (ϑun−1, u
M − un)α

and as aα(u, v) + ϑ (u, v)α is continuous and coercive we have

||un||2α ≤ C ||un||α
∣∣∣∣uM ∣∣∣∣

α
.

The norms ||un||α ≤ C
∣∣∣∣uM ∣∣∣∣

α
stay bounded in H1,α and there is a subsequence

um which converges weakly in H1,α to a function u∗. As the injection of H1,α

in L2,α is compact we also deduce that u∗ = uϕ. Since

F (v) = aα(v, v) + ϑ (v, v)α
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is lower semicontinuous in the weak topology ofH1,α (see, for instance , corollary
III.8, in Brezis [7])

aα(un, v) + ϑ(un, v)α ≥ aα(un, un) + ϑ(un, un)α + ϑ(un−1, v)− ϑ(un−1, un)α

implies, as n → ∞, that aα(uϕ, v − uϕ) ≥ 0, ∀v ∈ H1,α. Therefore uϕ is a
solution of (16) and it is easy to show that it is the minimum solution. Any
solution u of (16) is a fixed point of G and from u0 = 0 ≤ u we deduce recursively
un = Gun−1 ≤ u = Gnu and consequently uϕ ≤ u .

The next theorem shows that if we set ϕ = ψ the value function Φ1 is smaller
than the minimum solution uψ of (16). Thus if assumption (A5) is verified the
discount rate is large enough to assure a finite value function. Furthermore if
(A6) holds true, that is, in terms of ρ,

ρ− 1

2
δ2b̄2 + (ζ − 1

2
δ2)b̄ ≥ D > 0, ∀x ∈ [x̂,+∞) (20)

then we can show that there always exists an optimal stopping policy, which is
Markovian because it depends only on the current state of the process.

Theorem 6 If ϕ = ψ the continuous representative of uψ(x) verifies

uψ(x) ≥ Φ1(x) .

Moreover, if (A6) holds true, then uψ(x) = Φ1(x) and for every initial condition
x0 ∈ R there exists an optimal stopping policy (θ ∗x0

, γ∗x0
) given by

θ∗x0
= inf {s ≥ 0 : uψ(x(s)) = ψ(x(s))}

γ∗x0
=

{
γ∗(x(θ∗ −x0

)) if θ∗x0
<∞

arbitrary if θ∗x0
= +∞ .

Proof. In order to make use of Lemma 2.2, which requires an H2 regularity,
it is useful to consider the penalized equation

aα(uε, v) =
1

ε

(
(ψ − uε)+, v

)
α
, uε ∈ Z. (21)

By an argument similar to that used in theorem 4 to show the existence of uϕ we
can prove that there exists a minimum solution uεψ of (21). Indeed, we consider
the equation

aα(u, v) + ϑ(u, v)α =
1

ε

(
(ψ − u)+, v

)
α

+ ϑ(z, v)α

which has a unique solution uεz ∈ Z if z ∈ Z. Starting from uε0 = 0, the
increasing sequence of functions uεn, defined by uεn = uεzn where zn = uεn−1,
converges as n → ∞ to the minimum solution uεψ of (21). Moreover, by an
adaptation of theorem 4.1.4 in Bensoussan and Lions [5], it can be shown that,

12



as ε→ 0, we have uεn ↑ un, where un is given by (19), and consequently we also
have uεψ ↑ uψ when ε → 0. Let (θ , γ) ∈ Γ1,x be an admissible policy. Since

(21) is an equation, by local regularity it follows that uεψ ∈ H2(Ir), ∀r > 0. We
can apply formula (10) to the function uεψ(x) and the process x(s), considering
τ = 0, τ ′ = θ. Using (9) and (21) and taking the mathematical expectation we
obtain

uεψ(x0) = E [
1

ε

θ∧τr∫
0

(ψ−uεψ)+(x(s)) e
−

s∫
0

ρ(z(t))dt
ds+e

−
θ∧τr∫
0

ρ(x(t))dt
uεψ(x(θ∧τr)].

(22)
We have τr →∞ a.s.when r →∞, uεψ ↑ uψ as ε→ 0, uψ ≥ uεψ and
uψ ≥ ψ ≥ ψχθ<∞. From (22) we can deduce that for ε→ 0 and r →∞

uψ(x0) ≥ E [e
−
θ∫
0

ρ(x(t))dt
ψ(x(θ))χθ<∞] . (23)

But if θ is admissible necessarily x(θ) ≥ xmin and therefore from (14) and (23)
we have

uψ(x0) ≥ E [U(g(x(θ−), γ)) e
−
θ∫
0

ρ(x(t))dt
χθ<∞] .

As this inequality is true ∀(θ , γ) ∈ Γ1,x0
it follows uψ(x) ≥ Φ1(x).

We define θ ∗ε ≡ inf
{
s ≥ 0 : uεψ(x(s)) ≤ ψ(x(s))

}
. We have θ ∗ε ≤ θ ∗x0

because

uψ ≥ uεψ and θ ∗ε → θ ∗x0
for ε→ 0. If we set θ = θ ∗ε in equation (22) and we let

ε→ 0 we obtain

uψ(x0) = E [e
−
θ∗x0
∧τr∫

0

ρ(x(t))dt
uψ(x(θ∗x0

∧ τr))] =

= E [e
−
θ∗x0∫
0

ρ(x(t))dt
uψ(x(θ∗x0

))χθ∗x0<τr
+ e

−
τr∫
0

ρ(x(t))dt
uψ(x(τr))χτr≤ θ∗x0

] .

(24)
As r →∞ it follows that

E [e
−
θ∗x0∫
0

ρ(x(t))dt
uψ(x(θ∗x0

))χθ∗x0<τr
]→ E [e

−
θ∗x0∫
0

ρ(x(t))dt
uψ(x(θ∗x0

))χθ∗x0<∞
]

by the monotone convergence theorem. Since uψ ≤ uM we also have

E [e
−
τr∫
0

ρ(x(t))dt
uψ(x(τr))χτr≤ θ∗x0

] ≤

≤ C E [e
−
τr∫
0

ρ(x(t))dt
] +N E [e

−
τr∫
0

ρ(x(t)dt+b̄x(τr)
] ≤

≤ C E [e−ρminτr ] +N E [ (e−b̄rχx(τr)=−r + eb̄rχx(τr)=r)e
−
τr∫
0

ρ(x(t))dt
] .

(25)

Considering the exponential martingale

M(t) = exp[b̄x(t)− ((ζ(x(t))− 1

2
δ2(x(t)))b̄+

1

2
δ2(x(t))b̄2)t]

13



from (20) and τr →∞ a.s., it can be shown that, for r →∞,

E [ eb̄rχx(τr)=re
−
τr∫
0

ρ(x(t))dt
]→ 0 .

Therefore from (25), making r →∞, we obtain

E [e
−
τr∫
0

ρ(x(t))dt
uψ(x(τr))χτr≤ θ∗x0

]→ 0 . (26)

Finally from (24), (26) and uψ(x(θ∗x0
)) = ψ(x(θ∗x0

)) it follows

uψ(x0) = E [e
−
θ∗x0∫
0

ρ(x(t))dt
uψ(x(θ∗x0

)χθ∗x0<∞]

= E [e
−
θ∗x0∫
0

ρ(x(t))dt
ψ(x(θ∗x0

)χθ∗x0<∞]

= I(θ∗x0
, γ∗(x(θ∗ −x0

)))

and consequently uψ(x) = Φ1(x) = I(θ ∗x, γ
∗(x(θ∗ −x ))) .

The open set Q ≡ {x ∈ R: uψ(x) > ψ(x)} is the continuation region where
the process xv evolves freely. The complementary closed region
QC ≡ {x ∈ R: uψ(x) = ψ(x)} is the intervention region where it is optimal to
consume immediately the quantity ψ(x). The set Q is nonempty because it
contains (−∞, xmin) and QC is closed because ψ is continuous.

In the next sections we will need the following important additional result
on uψ(x), which is a corollary to theorem 6.

Corollary 7 Let θi ≤ θi+1 be two consecutive stopping times of v and xv(t) the
corresponding controlled process. The minimum solution uψ(x) of (16) verifies

E [e
−
θi+1∫
θi

ρ(xv(t))dt

uψ(xv(θ
−
i+1))χθi+1<∞ | Fθi ] ≤ uψ(xv(θi))χθi<∞ . (27)

Furthermore if

θ∗i+1 = inf
{
t ≥ θi

∣∣uψ(xv(t
−)) = ψ(xv(t

−))
}

and (20) holds true then we have the equality

E [e
−
θ∗i+1∫
θi

ρ(xv(t))dt

uψ(xv(θ
∗ −
i+1))χθ∗i+1<∞ | Fθi ] = uψ(xv(θi))χθi<∞ . (28)

Proof. It is sufficient to apply formula (10) to the minimum solution uεψ(x)
of (21) and to the process xv(s) in the interval [θi, θi+1∧ τr], considering τ = θi,
τ ′ = θi+1. Using the same argument of the proof of theorem 6, by making ε→ 0
and afterwards r →∞ we obtain (27) and if θ′ = θ∗i+1 we deduce (28).
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4 Existence and characterization of the optimal
consumption policy

When an infinity of stopping times are available the maximum reward we can
obtain if we stop immediately the process in x0 = x ≥ xmin is given by

sup
γ∈[γxmin,+∞]

U(g(x, γ)) + Φ(x− γ) .

Then it is natural to define a non local operator M on functions u : R → R+

such that

Mu(x) =


sup

γ∈[γxmin,+∞]

U(g(x, γ)) + u(x− γ) if x ≥ xmin

g(x,+∞) if x < xmin .

(29)

M has the following properties.

Theorem 8 Given assumptions (A2), (A3) and 0 ≤ u ≤ uM , the functionMu
verifies:

1) −F <Mu ≤ uM

2) if u is continuous then there exists a Borel measurable function
γ∗u : [xmin, ∞)→ R+, such that, for x ≥ xmin we have

Mu(x) = U(g(x, γ∗u(x))) + u(x− γ∗u(x)) (30)

3) Mu is continuous if u is continuous.

Proof.
1) For x < xmin we have −F <Mu(x) < 0. For x ≥ xmin we haveMu ≥ 0 and
from (A3), (12), (13) it follows

Mu(x) ≤ sup
γ∈[γxmin,+∞]

a(d(x, γ)− F )b + uM (x− γ)

≤ sup
γ∈[γxmin,+∞]

N(d(x, γ))b̄ + C +Neb̄(x−γ)

≤ sup
γ∈[γxmin,+∞]

C +Neb̄x((1− e−γ)b̄ + e−b̄γ) < uM

as b̄ = Max(b, 1) ≥ 1.

2) Since U and g are upper-semicontinuous and u is continuous we have, for
x ≥ xmin

lim sup
γ→∞

U(g(x, γ)) + u(x− γ) ≤ U(ex −K(ex))

and therefore there certainly exists γ∗ such that

Mu(x) = U(g(x, γ∗)) + u(x− γ∗) .
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By using a selection theorem (see appendix B in Fleming and Rishel [13]) we
can define the Borel measurable function γ∗u(x) which verifies (30), ∀x ≥ xmin .

3) We omit the proof because, when U and g are upper-semicontinuous and u
is continuous, this is a well known property of the non local operator in impulse
control problems (see, for example, [1]).

Let Φn(x) be the value function of the problem when at the most n stopping
times are available (i.e. θn+1 = +∞). It is natural to look at Φn(x) as the
solution of (16) with the obstacle ψ(x) =MΦn−1 (x) and to define recursively
a sequence starting from Φ0 = 0. We will look for the value function as the
limit of Φn(x) when n → ∞. Now, we consider the following quasi-variational
inequality in H1,α 

aα(u, v − u) ≥ 0

∀v ∈ H1,α such that v ≥Mu

u ≥Mu, u ∈ Z .

(31)

Inequality (31) may have many solutions, as it is usual with unbounded domains,
but the most relevant solution comes out to be the minimum solution.

Theorem 9 Under assumptions (A1)-(A5) and (A7), the quasi variational in-
equality (31) has a minimum solution umin. Moreover, the function umin verifies

umin(x) ≥ Φ(x) = sup
v∈Γx

I(v) ∀x ∈ R . (32)

Proof. We consider an operator T : Z → Z, which relates z ∈ Z to the
continuous solution uψ ∈ Z of (16) corresponding to the obstacle ψ =Mz. This
obstacle verifies the assumptions on ϕ of theorem 5. The operator T has the
fundamental monotonicity property that Tz1 ≤ Tz2 if z1 ≤ z2. This property
follows from property 1 of M and the fact that the solution of (16) increases
when the obstacle ψ is increasing. We define the increasing sequence of functions{

un = Tun−1

u0 = 0 .
(33)

Using the same reasoning of theorem 5 we can show that un converges pointwise
to a function u ∈ H1,α which verifies aα(umin, v − u) ≥ 0, ∀v ∈ H1,α such that
v ≥ Mu. Moreover from un ≥ Mun−1 it follows un ≥ U(g(x, γ)) + un−1(x −
γ) and since γ ≥ γxmin is arbitrary, for n → ∞ we deduce immediately that
umin ≥ Mumin. Therefore umin is a solution of (31) and we can show, in the
same way we did in Theorem 5, that it is the minimum solution. If we apply
the inequality (27) to umin ≥ Mumin and to an arbitrary admissible policy
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v = (θi, γi), multiplying both sides by e
−
θi∫
0

ρ(xv(t))dt
we obtain

e
−
θi∫
0

ρ(xv(t))dt
umin(xv(θi)χθi<∞

≥ E [e
−
θi+1∫
0

ρ(xv(t))dt
Mumin(xv(θ

−
i+1))χθi+1<∞ | Fθi ] .

From the definition of Mu and xv(θi+1) = xv(θ
−
i+1)− γi+1 it follows

e
−
θi∫
0

ρ(xv(t))dt
umin(xv(θi)χθi<∞ (34)

≥ E [e
−
θi+1∫
0

ρ(xv(t))dt
U(g(xv(θ

−
i+1), γi+1))χθi+1<∞ | Fθi ]

+E [e
−
θi+1∫
0

ρ(xv(t))dt
umin(xv(θi+1))χθi+1<∞ |Fθi ] .

If we take the mathematical expectation in (34) and we sum up all the inequal-
ities for i varying from 0 to n− 1, recalling that θ0 ≡ 0, we get

umin(x) ≥ E [

n∑
i=1

U(g(xv(θ
−
i ), γi)) e

−
θi∫
0

ρ(xt)dt
χθi<∞]

+E [ e
−
θn∫
0

ρ(xt)dt
umin(xv(θn))χθn<∞]

and as umin ≥ 0 and x ∈ R, v ∈ Γx are arbitrary, we deduce for n→∞
umin(x) ≥ Φ(x), ∀x ∈ R.

We describe now the optimal policy v∗. For this purpose we define in R the
continuation region Q where the system evolves freely

Q = {x ∈ R : umin(x) >Mumin(x)} (35)

and the complementary closed intervention region QC . The first optimal stop-
ping time is defined to be the first exit time of the uncontrolled process from
Q

θ∗1(x0) = inf {t ≥ 0 | x(t) /∈ Q} . (36)

In θ∗1 the optimal jump

γ∗1 =

{
γ∗(x(θ∗−1 )) if θ∗1 <∞
arbitrary if θ∗1 = +∞ (37)

is enforced, where γ∗ = γ∗umin
(x) is the function which verifies (30) with u = umin

(to simplify the notation we omit the dependence of θ∗i and γ∗i on the initial
condition x0). The subsequent

(
θ∗i+1, γ

∗
i+1

)
are defined recursively by∣∣∣∣∣∣∣

θ∗i+1 = inf {t ≥ θ∗i | xv(t−) /∈ Q}

γ∗i+1 =

{
γ∗(xv∗(θ

∗−
i+1)) if θ∗i+1 <∞

arbitrary if θ∗i+1 = +∞ .

(38)
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The next theorem shows that v∗x = {(θ∗i , γ∗i )} is admissible and optimal and
that umin is the value function.

Theorem 10 Under assumptions (A1)-(A4) and (A6), (A7), the policy
v∗x = {(θ∗i , γ∗i )} defined in (36)-(38) is admissible and optimal. Moreover the
minimum solution umin of (31) is the value function of problem (A), that is to
say

umin(x) = Φ(x) = I(v∗x) ∀x ∈ R .

Proof. First we show that v∗x0
= {(θ∗i , γ∗i )} is admissible. Suppose there

exists T > 0, such that limi→∞ θ∗i (ω) = T on a set A of positive probability.
Since the trajectories of the uncontrolled process x(t) are a.s. continuous there
exists ω1 ∈ A such that x(t, ω1) ≤ M for t ∈ [0, T ]. Since xv(t) ≤ x(t) we
can deduce that limi→∞ xv(θ

∗
i (ω1)) = −∞ because at each θ∗i we have γ∗i � 0.

Therefore there exists θ∗i such that xv(θ
∗ −
i (ω1)) ∈ int(Q), the interior of Q,

but this contradicts the definition of θ∗i and thus θ∗i → ∞ a.s. when i → ∞.
By using (28) if we consider v∗ in the inequality (34) we obtain an equality and
summing up for i varying from 0 to n− 1, after taking expectations, we get

umin(x) = E [

n∑
i=1

U(g(xv(θ
∗ −
i ), γi)) e

−
θ∗i∫
0

ρ(xt)dt
χθi<∞] + (39)

+E [e
−
θ∗n∫
0

ρ(xt)dt
umin(xv(θ

∗
n))χθn<∞] .

Since xv(t) ≤ x(t) and 0 ≤ umin ≤ uM we deduce

E[ e
−
θ∗n∫
0

ρ(xt)dt
umin(xv(θ

∗
n))χθn<∞] ≤ E[e

−
θ∗n∫
0

ρ(xt)dt
(C +Neb̄x(θ∗n))χθ∗n<∞] .

For n→∞ we have θ∗n → +∞ a.s., and if ρ verifies (20) we obtain

lim
n→∞

E [e
−
θ∗n∫
0

ρ(xt)dt
umin(xv(θ

∗
n))χθn<∞] = 0 . (40)

Therefore making n → ∞ in (39), from (40) we have umin(x) = I(v∗x), ∀x ∈ R
and from (32) we conclude that

umin(x) = I(v∗x) = Φ(x), ∀x ∈ R.

If we come back to our original problem, it is immediate to obtain the value
function and the optimal policy of problem (P).

Corollary 11 Under assumptions (A1)-(A4) and (A5)-(A7), the value func-
tion of problem (P) is given by

V (S) = Φ(lnS) = umin(lnS)

18



where umin is the minimum solution of (31). Moreover there exists an optimal
Markovian control p∗ = {(τ∗i , ξ∗i )} which is obtained recursively from
(i ≥ 1, τ0 ≡ 0)∣∣∣∣∣∣∣∣∣

τ∗i = inf
{
t ≥ τ∗i−1 | lnSp∗(t−) /∈ Q

}
ξ∗i =

∣∣∣∣∣ Sp∗(τ
∗ −
i )[1− e−γ

∗
umin

(lnSp∗ (τ∗ −i ))] if τ∗i <∞
arbitrary if τ∗i = +∞

(41)

where Q and the function γ∗umin
are defined respectively in (35) and (30).

Proof. The result follows immediately applying Lemma 1.

Remark 12 As an immediate consequence of Theorem 10 and Corollary 11 we
obtain that Φ(x) and V (S) are continuous respectively in R and R+. If
umin ∈ H2,α than one can easily show the equivalence between (31) and the
strong formulation 

Au ≥ 0, u ∈ H2,α ∩ Z

u ≥Mu

(u−Mu)Au = 0

(42)

which is the QVI formulation commonly used to obtain verification theorems for
stationary (infinite horizon) impulse control problems. However the existence
of a solution to (42) requires more restrictive assumptions than those used in
theorem 9. In the next section we give an example where the value function is
not smooth enough to be a solution of (42) but it is a solution of (31).

Corollary 13 If there exists a solution u ∈ H2,α of (31), that solution is unique
in H2,α and it is the value function of problem (A), that is u = umin = Φ.

Proof. In this case the formula (10) can be applied directly to u ∈ H2,α

and we obtain (27) and (28). Using the same proof of theorem 10 it follows that
u is the value function. But since the value function is necessarily unique there
exists at most one solution u ∈ H2,α of (31), and we have u = umin.

5 Linear utility and a two values discount rate

In this section we consider, as an illustrative example, the simple case∣∣∣∣∣∣
µ(S) = µ > 0, σ(S) = σ > 0, K(ξ) = F , U(c) = c

β(S) =

{
β1 if S < 1
β2 if S ≥ 1

with β1 < µ < β2 .
(43)

Here the agent is more reluctant to postpone consumption when he is sufficiently
rich, specifically when the amount of S becomes greater than the threshold level
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S = 1. The assumptions of Corollary 11 are verified and thus there exists the
optimal consumption. We aim to find V (S) and the optimal policy in an explicit
way, assuming F to be large enough (see condition (45) below). In terms of
problem (A) we have

ζ(x) = µ > 0, δ(x) = σ > 0, ρ(x) =

{
β1 if x < 0
β2 if x ≥ 0

. (44)

We define, for β > 0,

λ(β) =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2βσ2

σ2
> 0

and we denote λ1 = λ(β1), λ2 = λ(β2). From β1 < µ < β2 it follows

0 < λ1 < 1 < λ2

and we will assume

F >
1

λ1
− 1

λ2
. (45)

We will need the following result.

Lemma 14 Given condition (45) the system of equations
keλ1D − keλ2d + ed − eD = F

kλ2e
λ2d = ed

kλ1e
λ1D = eD

(46)

has a unique solution (k∗, D∗, d∗) ∈ R3 such that k∗ > 0 and D∗ < 0 < d∗.

Proof. From (46) we obtain, after some calculation
(1− λ1)λ

λ1
1−λ1
1 k

1
1−λ1 + (λ2 − 1)λ

− λ2
λ2−1

2 k−
1

λ2−1 = F

d = log kλ2

1−λ2

D = log kλ1

1−λ1
.

(47)

We denote by G(k) = F the first equation in (47) and from 0 < λ1 < 1 < λ2 it
follows limk→o+ G(k) = limk→+∞G(k) = +∞ and G′′(k) > 0 for k > 0. From
the last two equations in (47) in order to have D < d we derive

k < λ
− λ2−1
λ2−λ1

1 λ
− λ1−1
λ2−λ1

2 ≡ k̄ .

We define d̄ = log k̄λ2

1−λ2
, D̄ = log k̄λ1

1−λ1
and we have d̄ = D̄ < 0 because k̄ > 0

and 0 < λ1 < 1 < λ2. Given the form of G(k) the equation G(k) = F has a
unique solution k∗ > 0 if and only if G(k̄) < F and 0 < k∗ < k̄. But from
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d̄ = D̄ and (46) we obtain G(k̄) = k̄eλ1D̄ − k̄eλ2d̄ = ed̄( 1
λ1
− 1

λ2
). Since d̄ < 0

and F > 1
λ1
− 1

λ2
it follows G(k̄) < F . Therefore the first equation in (47)

has a unique solution k∗ > 0, and we set d∗ = log k∗λ2

1−λ2
, D∗ = log kλ1

1−λ1
where

D∗ < d∗ because k∗ < k̄. As (k∗, D∗, d∗) is a solution of (46) it must verify
( 1
λ1
− 1)eD

∗
+ (1− 1

λ2
)ed
∗

= F . From (45) and D∗ < d∗ it follows D∗ < 0 and
d∗ > 0.

Now we will show that the value function of problem (A), that is umin, is
given by

u(x) =


k∗eλ1x if x ∈ (−∞, 0)
k∗eλ2x if x ∈ [0, d∗)

ex − eD∗ − F + k∗eλ1D
∗

if x ∈ [d∗,+∞) .
(48)

This function is continuous in R by (46), but it is not continuously differentiable
in x = 0 and consequently it is not a solution of (42). Thus, in order to obtain
the optimal policy, we cannot apply to u the usual verification theorems which
require a C1 regularity. Nevertheless we will show that u(x) = umin(x) is the
minimum solution of (31) and therefore, by using Corollary 11, we are able in this
case to solve problem (P) explicitly. We define SD∗ ≡ eD

∗
< 1, Sd∗ ≡ ed

∗
> 1 .

Theorem 15 If (43), (45) hold true then we have

V (S) =


k∗Sλ1 if S ∈ [0, 1)

k∗Sλ2 if S ∈ [1, Sd∗)

S − SD∗ − F + k∗S λ1

D∗ if S ∈ [Sd∗ ,+∞)

and the optimal consumption policy p∗ = {(τ∗i , ξ∗i )} is given recursively by
(i ≥ 1, τ0 ≡ 0) ∣∣∣∣∣∣∣∣

τ∗i = inf t ≥ τ∗i−1 | Sp∗(t−) /∈ [0, Sd∗)

ξ∗i =

∣∣∣∣∣ Sp∗(τ
∗ −
i )− SD∗ if τ∗i <∞

arbitrary if τ∗i = +∞ .

Proof. Let u be defined as in (48). It is sufficient to show that u is the
minimum solution of (31) and then apply Corollary 11. Choosing C and N
large enough in (13) we have 0 < u < uM and thus u ∈ Z.
Let H(x, γ) = g(x, γ) + u(x − γ). From (6), (48) and K(ξ) = F > 0 constant,
it follows

∂H

∂γ
(x, γ) =


ex−γ − k∗λ1e

λ1(x−γ) if x− γ ∈ (−∞, 0)

ex−γ − k∗λ2e
λ2(x−γ) if x− γ ∈ (0, d∗)

0 if x− γ ∈ [d∗,+∞) .

(49)
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By (49) and Lemma 14 we derive
∂H
∂γ (x, γ) > 0 if x− γ ∈ (D∗, 0) ∪ (0, d∗)

∂H
∂γ (x, γ) = 0 if x− γ ∈ {0} ∪ [d∗,+∞)

∂H
∂γ (x, γ) < 0 if x− γ ∈ (−∞, D∗) .

(50)

As K(ξ) = F we have xmin = lnF and x − γxmin ≥ D∗ when x ≥ ln(F + eD
∗
).

From the definition (29) of Mu and (43), (48), (50), we obtain

Mu(x) =


ex − eD∗ − F + k∗eλ1D

∗
if x ∈ (ln(F + eD

∗
),+∞)

k∗eλ1(x−γxmin) if x ∈ [lnF, ln(F + eD
∗
)]

ex − F if x ∈ (−∞, lnF ) .

(51)
By the first of (46) it follows d∗ > ln(F + eD

∗
) and comparing (48) with (51) it

is easy to see that u = Mu if x ≥ d∗ and u >Mu if x < d∗. For x ≥ d∗ we
have γ∗u(x) = x −D∗, where γ∗u is the function defined by (30). To prove that
u is a solution of (31) it remains to show that aα(u, v − u) ≥ 0, ∀v ∈ H1,α such
that v ≥Mu. From (8) and (44) we have

Au =


k∗eλ1x(− 1

2σ
2λ2

1 − (µ− 1
2σ

2)λ1 + β1) if x ∈ (−∞, 0)

k∗eλ2x(− 1
2σ

2λ2
2 − (µ− 1

2σ
2)λ2 + β2) if x ∈ (0, d∗)

(ex − eD∗ − F + k∗eλ1D
∗
)(β2 − µex

ex−eD∗−F+k∗eλ1D
∗ ) if x ∈ (d∗,+∞).

From the definition of λ1, λ2 it follows Au = 0 in (−∞, 0) ∪ (0, d∗), and by
( 1
λ1
− 1)eD

∗
< F and β2 > µ we obtain Au > 0 in (d∗,+∞). For any v ∈ H1,α,

v ≥Mu we have (Au, v−u)α = (Au, (v−u)+)α− (Au, (v−u)−)α ≥ 0 because
Au ≥ 0 a.e. and Au = 0 when u > v ≥ Mu. Integrating by parts in (−∞, 0)
and in (0, d∗) it is easy to see that

aα(u, v − u) = (Au, v − u)α + (v(0)− k∗) (λ2 − λ1)k∗σ2w2
α

2

and by density it follows that aα(u, v − u) ≥ 0, ∀v ∈ H1,α such that v ≥ Mu.
Finally it is not difficult to show that u = umin is the minimum solution of (31).
If we consider the sequence of systems (n ≥ 1) starting with k0 ≡ 0

kn−1e
λ1Dn − keλ2dn + edn − eDn = F

knλ2e
λ2dn = edn

kn−1λ1e
λ1Dn = eDn

(52)

we can show, as in Lemma 14, that each system in (52) has a unique solution
(k∗n, D

∗
n, d
∗
n) such that k∗ > k∗n > 0, D∗n < D∗ < 0, d∗n > d∗ > 0. Furthermore

the sequences k∗n, D∗n are increasing while d∗n is decreasing and thus we have
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(k∗n, D
∗
n, d
∗
n) → (k∗, D∗, d∗) as n → ∞. Therefore we can show as before that

(u0 = 0; D∗1 = −∞)

un(x)


k∗ne

λ1x if x ∈ (−∞, 0)

k∗ne
λ2x if x ∈ [0, d∗n)

ex − eD∗n − F + k∗n−1e
λ1D

∗
n if x ∈ [d∗n,+∞)

is a solution of (31) when the obstacle Mu is replaced by Mun−1. Since un
is increasing and un → u we conclude as in Theorem 9 that u is the minimum
solution of (31).

Remark 16 For t > 0 the wealth of the agent will remain in the interval
(0, Sd∗ ]. Apart from the initial consumption in t = 0, if S0 > Sd∗ , he will
always consume the amount Sd∗ − SD∗ whenever his wealth reaches the barrier
S = Sd∗ . If β1 = β2 > µ it is not difficult to see that our example degenerates
to an optimal stopping problem. The solution becomes

V (S) =

{
kSλ for S ∈ (0, Fλλ−1 )

(S − F ) for S ∈
[
Fλ
λ−1 ,+∞

)
∣∣∣∣∣∣∣
τ∗1 = inf

{
t ≥ 0 | S(t) /∈ (0, Fλλ−1 )

}
ξ∗1 =

∣∣∣∣ S(τ∗1 )
arbitrary if τ∗1 = +∞ .

where k = 1
λλ

(λ−1
F )λ−1; τ∗i = +∞ and ξ∗i arbitrary, for i > 1.

6 Conclusions

In this paper we have shown the existence and the structure of the optimal
consumption of a generalized geometric Brownian motion under general as-
sumptions on the utility function and the strictly positive intervention costs.
The presence of a fixed component in the intervention cost leads to a solution
completely different from continuous consumption: the agent consumes only by
finite amounts at separated time instants. The generality of our assumptions on
the dynamics of S, on K, U and β allows to consider a great variety of different
situations and it is important to deal with realistic applications. In section 5
we have obtained the optimal consumption explicitly in a simple case, giving an
example where the value function is not continuously differentiable (it is likely
that the value function is not C1 also if we consider an utility function which
is only upper-semicontinuous). In most cases it will not be possible to obtain
closed form solutions of our model. However to the extent that we manage
to numerically solve the variational inequality (16), the sequence of increasing
functions un defined in (33) can be used to compute umin and consequently
the optimal policy. In this direction the variational techniques can be useful to
prove the convergence of a numerical scheme which calculates the QVI solution
by a sequence of iterated variational inequalities.
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