

AN ABM FOR ECONOMICS:
MICRO EXPLAINS MACRO

LUCA BARONE

Working paper No. 16 - January 2013

DEPARTMENT OF
ECONOMICS AND STATISTICS

WORKING PAPER SERIES

Quaderni del Dipartimento di Scienze
Economico-Sociali e Matematico-Statistiche

ISSN 2279-7114 Founded in 1404

 UNIVERSITÀ
DEGLI STUDI

DI TORINO

ALMA UNIVERSITAS
TAURINENSIS

An ABM for Economics: Micro explains Macro

Luca Barone (University of Turin)

24th November 2012

Abstract

The link between micro and macro level has always been difficult
to trace, even when variables have strong homogeneous characteris-
tics. What happens when heterogeneous components and random
factors interact is even more difficult to define.

By adopting an agent-based approach we found a result that does
not reflects the classical methods of quantification of an economy.
This can be interpreted as an alarm bell signaling a wrong descrip-
tion of the economic framework we want to explain. We illustrate the
effectiveness of the "agent-based reasoning machine" and we derive
a model to compare with classical methods of aggregation.

A more comprehensible description of the model is given by "Uni-
fied Modeling Language (UML)" and "ODD standard protocol", al-
lowing us to clarify the internal processes of our model.

Keywords: Aggregation, NetLogo, Simulations, Micro-Macro link,
Agent Based Models (ABMs), Unified Modeling Language (UML),
ODD standard protocol

1

Contents

1 Introduction 3

2 Simulation Model for Aggregation 6
2.1 NetLogo Model . 7

2.1.1 Extraction of dataset 8
2.2 R results and plots . 9
2.3 Simulations . 11
2.4 Aggregation techniques . 12

2.4.1 Plain Model for Aggregation 14
2.4.2 Micro Simulation Model for Aggregation 14
2.4.3 ABM for Aggregation 15
2.4.4 Comparison . 15

3 General conclusions 17

A Appendix A: NetLogo code 20

B Appendix B: R code 33

C Appendix C: Representations of Simulation for Aggregated Con-
sumption and Production function 38
C.1 Unified Modeling Language (UML) 38

C.1.1 Class diagram . 39
C.1.2 Sequence diagram . 41
C.1.3 State diagram . 42
C.1.4 Activity diagram . 42

C.2 ODD Standard Protocol . 43
C.2.1 Purpose . 47
C.2.2 Entities, state variables and scales 47
C.2.3 Process overview and scheduling 48
C.2.4 Design concepts . 48
C.2.5 Initialization . 49
C.2.6 Input data . 50
C.2.7 Submodels . 50

2

1 Introduction

The problem of aggregation is one of the fundamental economic steps that
has not been completely solved so far. How to connect an individual to
an aggregate function is not clear yet. In other words, we have not found
the function that allows us to connect the micro to the macro level and/or
vice versa.

Vartia has tried to construct a theory that tied these two variables sig-
nificantly. From the beginning, there has seemed like an important in-
terpretation of the problem, and we thought that could fill the void left
by the economic theory of reference. In part, our impression was correct.
He attributes the difference between micro and macro level variables to a
covariance between the terms constituting a function under consideration
(e.g. the consumption function, Godley (1999)), which in some cases may
be canceled, causing a perfect equality between the two levels under study.

Do the parts determine the whole or is the whole more than the sum of its
parts?

We refer to the theory of Vartia, professor at the University of Helsinki,
building up a significant practical case attributed to the example of the
consumption function and the marginal propensity to consume. Vartia’s
contribution to the problem of aggregation can be found through his main
papers:

• On the Aggregation of Quadratic Micro Equation, Vartia (2008b);

• Whole and its Parts Micro Foundations of Macro Behaviour, Vartia
(2009);

• Analysis and Synthesis of Wage Determination in Heterogeneous
Cross-sections, Suoperä & Vartia (2011);

• Integration of Micro and Macro Explanations, Vartia (2008a);

• Relative Changes and Index Numbers, Vartia (1976);

• How should relative changes be measured? Törnqvist et al. (1985).

Since we believe that these cases are restrictive, we decide to focus
on the concept of equal sign between the two levels plus a covariance
term that explains precisely the differences that emerge. Subsequently, we
found that the theory produces a valid interpretation of the problem of
aggregation but something is missing. No mention about the sign of the
covariance is made: we do not know if covariance term is increasing or
decreasing or whether it is negative or positive.

3

So how can we know if the macro level overestimates the micro level or the
micro level is underestimated by the macro level?

Unfortunately, we still have no answer. Our task, through this work,
was groped to make a clarification about the sign of covariance and, hence,
about the nature of the aggregation error.

Although we retrace the key concepts of the theory of Vartia, we will
develop our analysis on a different theme: the aggregation is analyzed
mainly under the point of view of the production function, Friedman
(1957), the aggregate domestic product, Burbidge & Cuff (2005), using
a simple Agent Based Model we created through NetLogo. Hence, the
distinctive character of our work is attributed to the composition of indi-
vidual production functions, since they are derived from an agent based
model (ABM). Normally, individual production functions refer to a sam-
ple mean of a given period of time with reference to some place. In our
case, they are calculated using a model created in the computer. We build
our own model, we define the parameters and variables of the model, we
decide how long the time-series dataset should be and how many agents
we want to consider. In this way, we can give a greater breadth to the
range of individual production functions, by evaluating the factors that
emerge from the interactions of agents, the factors of imitation behavior
and all the random factors.

The central part of our discussion is the calculation method to derive
the aggregate results from an individual production function. Three differ-
ent methods are shown, starting from the simplest to the most complete.
Giving a brief explanation about their differences and how they originated,
we conclude by providing our interpretation on findings and by proving
that changes on aggregate results are substantial.

The first two methods are named Plain and Micro Simulation. Such ap-
proaches can be combined with the practice of aggregation used by the
System of National Accounts (SNA) or other entities that deal with the
problem of aggregation. It refers to the simple summation of the individ-
ual functions (Plain) that can sometimes be weighted (Micro Simulation)
according to methods of calculation.

In the last method, the Agent Based Model, our tool to aggregate is
R. It receives as input a dataset of individual production functions from
NetLogo and, through a quantitative process, outputs the aggregate result.
That is an innovative method that could prove a key tool for reducing the
error of aggregation or explaining its causes.

Tied to the agent-based methodology, we obtain and quantify, through
various simulations, the covariance among variables of individual pro-
duction functions. That value of covariance between individual behaviors,

4

which in our case turns out to be negative for the production function, al-
lows us to explain the error of assessment between micro and macro levels.
In our Agent Based Model the production function is lower where indi-
viduals are not covered as independent entities but act by interfering with
one another. As a consequence, it is completely wrong to attribute to each
individual either the same distinctive features or the equal propensity to
preferences in behavior (i.e. do not consider the covariance term).

Unfortunately, it is still difficult to understand in detail the reason for
which the function is less than the Plain and Micro Simulation if not at-
tributing a technical meaning resulting from the assumptions incorporated
during the construction of the model or from the agents’ interactions. In
order to allow readers to their own interpretation on the results obtained,
we opted to represent the model either with the Unified Modeling Language
(UML) or the ODD Standard Protocol; being the first the most effective un-
der the point of view of the representation of the "mechanical sequence
of behavioral course", i.e. it is closer to the practical and technical ABM
technique, while the second more theoretical and useful for readers that
are not interested in the technicalities of the model.

Probably, our results can not be defined as definitive yet, since our
model is an easy simplification of an economic scenario. However, we can
say that our "Agent Based Reasoning Machine" provides some interesting
results and helps to outline a step forward in the discussion on the issue
of aggregation.

Our call is to employ this tool for reasoning in the future, implement-
ing the model we constructed to make it closer to reality, in order to obtain
further explanations about the covariance between macro and micro level,
i.e. the error of aggregation.

The following section is the main part of our work. It is divided into
four major phases.

The first covers either the illustration of the model that has ben created
with NetLogo, by which we construct our dataset of individual production
functions or the extraction technique used to output the dataset.

The second phase treats our aggregation tool: R. Results that have been
found by R are attached, together with plots, and are discussed.

The third is very relevant. It deals with simulations that allow us to
calculate an average result rather than just one. This is necessary because
agent-based models emit different results each time.

The last phase, the most important, concerns the comparison of the
three different methods of aggregation: Plain, Micro Simulation and ABM.

5

All three methods are widely explained and discussed. A further comment
is also present in the general conclusions.

Appendix A lists the NetLogo programming code of our model. Such
Appendix can be used for the detailed explanation of model code that
allows us to create and output the dataset of individual production func-
tions discussed in section (2.1).

Appendix B produces the R code that is used to aggregate individual
production functions whose findings are shown in section (2.2).

Appendix C outlines two mechanisms of describing ABMs: UML and
ODD standard protocol. The first structures the model in several classes
that interact with different order. Each interaction is drawn through dia-
grams which show the type of relationship. Diagrams can draw divisions
between classes, timelines or individual and / or aggregate behaviors. The
second is more verbal and describes in words what happens within the
model by dividing arguments according to a standard protocol for read-
ing and writing. The two mechanisms combined give a complete view of
the model and allow for every type of reader to understand how it works.

2 Simulation Model for Aggregation

This chapter develops an agent-based model that will help us to discuss
the problem of aggregation. This model is derived from the fusion of two
other models taken from the library of NetLogo: "Sugarscape, Epstein &
Axtell (1996) and Wilensky (1999)" and "Urban Suite - Economic Dispar-
ity, Felsen & Wilensky (2007) and Wilensky (1999)". The main feature of
our model is an additional code that allows us to extract a dataset to be
processed for our aggregation. Despite that, the model will be an easy
simplification of reality. For simplicity we decided to use R for data pro-
cessing, having excellent ability to communicate with NetLogo.

We split the session by starting with a general description of the model,
the main features and what are the agents’ behaviors. Secondly, we de-
scribe the code, emphasizing its economics meaning rather than the tech-
nical content of the NetLogo language. Then, we explain our technique
of extraction of the dataset that was created by NetLogo. We come to un-
derstand as R can use the dataset extracted and how is possible to derive
aggregated results. Finally, we compare the R aggregated results of Net-
Logo individual production functions dataset with other 2 ways used for
aggregation. We thus outline the differences among the three methods,
pros and cons and we discuss concerning the best technique.

6

Figure 1: NetLogo interface (after 200 ticks)

2.1 NetLogo Model

Figure 11 shows the NetLogo interface of the model.
We set up two breeds of turtles, graphically the blacks and the reds,

that have different peculiarities. Same for the patches that contain re-
sources. According with the amount of resources, they have different col-
ors, for instance the blue means no resources, the green the maximum
amount of resources and the yellow the lowest level of resources. Think
about a field where blu is water, yellow is a parched land and green is
a rich soil. Agents can move on the ground searching for the best areas
where to exploit resources. As soon as they find the best area, they start
to produce, hence, to extract resources from the soil. At the same time
they produce, they have to consume a part of their production. For this
reason, same of the resources are needed for the energy requirement and
the left over is considered as the net turnover. Naturally, when an agent
exploits resources from a field, time has to pass to restore the initial con-
dition of resources. In addition, agents have the power to exploit also the
neighboring patches and not the patch where they are only. Imagine as
they spoil the surrounding area as a result of their activity on one patch.
At last, every agent can recognize the best areas where to move on. This is
an important skill that helps them to distinguish areas where other agents
have already located on to the empty ones or, basing the decision directly
on the quantity of resources, the area having the maximum amount of
resources from the parched lands.

1Figure 1 shows the interface after 200 ticks have past

7

To sum up, by locating on patches, agents gain resources, increasing ei-
ther their production or consumption counter, and decreasing the amount
of resources hold by patches. They can see where they have better go and
their strategies strictly depend on other agents’ actions.

The idea of this model is to build up some exogenous factors that affect
the production function, in order to have a non trivial results. Different
factors can affect the agent’s production. First of all, we equip agents
with the capability to single out the best areas from the rest of the others.
They can see the amount of resources that a patch has. Secondly, they
affect both the patch where they are located and the surrounding ones
causing a deviation to other agents’ choices. Then, we set the maximum
amount of resources of each patch limiting the range of actions of the
population. Finally, we assign different technologies of production to our
agents. Blacks are more efficient than reds. They produce more, having
a more advance technology that also leads to a higher exploitation of the
soil and a greater impact of the surrounding areas.

To conclude, here interactions play an important role and provide non-
trivial results concerning both the individual and the aggregate level.

2.1.1 Extraction of dataset

The NetLogo model has the main aim to create a dataset that is used
for aggregation. Usually, dataset comes from surveys or historical records
own by public institutions. In our case, it comes from an ABM: by running
simulations, it provides the dataset we need for the aggregation analysis.
This is a very innovative way of evaluating the aggregation issue, since the
existent literature does not supply any meaningful example that is linked
with such an ABM approach.

Technically, it saves 20 text files for both breed of agents having the
production data of each agent over time. Note that we are assuming that
the population is composed by 20 agents, 10 pro and 10 ama in order to
keep the extraction and importation of the dataset simple. However, It
is not a big deal to extend our analysis to a larger population. NetLogo
simplifies our task by assigning to each agent a number starting from 0 to
the number of agents we would have in the model (in the example the total
number is set to 10, hence, we will have 10 pro and 10 ama). Due to the
fact the the enumeration starts with agent pro, the pro will be enumerated
from pro0 to pro9. ama instead, will be from ama10 to ama19.

8

2.2 R results and plots

We now attach the R outputs. Figure 2 and Figure 3 draw the regression
graph and the density plot of the above-mentioned prod_average respec-
tively, outlining the deviations from the general mean. Further, Figure 4
and Figure 5 furnish details regarding the individual production function
densities of every agent belonging to each breed (pro agents first and ama
subsequently).

Representations in Figure 4 and Figure 5 show that agents are ex-
tremely heterogeneous with respect to each other. However, agents do
present many common features and opportunities to have the same val-
ues of production.

Why such results present so different values if agents have mostly the same
shapes?

Fundamentally, two reasons need to be outlined. On the one hand,
defining agents with "the same shape" is completely wrong. While build-
ing up the NetLogo model, we imposed some different characteristics to
agents. For instance, the capability to find out resources and the technol-
ogy of production. In addition, further, the locations, where they were
distributed on, were completely random. All of these features do con-
tribute to vary the production function values. On the other hand, we
should recall the concept of Interaction and Emergence, Squazzoni (2012).
The former, can be defined as the agents’ power to modify their choices
with respect to the somebody else’s choices and to output a completely
unexpected result. The latter, instead, is the idea to the evolution of com-
plex systems that develop over time. The two are strictly linked and lead
to different agents’ behaviors. Normally, hundreds or thousands of inde-
pendent "agents" interact by operating concurrently or cooperating and,
as a result, we end up with non-obvious properties, contrasting with any
expectation.

To conclude, it is not completely correct to award ABM technique the
all merit of furnishing unexpected results, rather, we do stress that some
assumptions were made in order to create heterogeneity among individu-
als.

Remember that our model does not consider many of the differences
that distinguish a real economic scenario. Imagine what would happen if
the model tried to explain a more complicated framework: results cannot
be anticipated in any way.

9

Figure 2: prod_average regression plot

Figure 3: prod_average density plot

10

Figure 4: pro production densities

Figure 5: ama production densities

2.3 Simulations

Simulations are depicted in Table 1 that furnishes values concerning the
prod_average and then the relative pro and ama contributions to the general

11

Simulation prod_average pro_prod_average ama_prod_average
1th 0.96 1.57 0.35
2th 1.13 1.99 0.27
3th 1.34 2.49 0.20
4th 0.73 1.15 0.30
5th 1.28 2.19 0.37
6th 1.16 2.02 0.30

Average (6th excl.) 1.32 2.28 0.36
Average (6th incl.) 1.10 1.90 0.30

Table 1: Simulations

average within the considered period. First column depicts the simulation
whose values refer to, the second the general prod_average and the third
and fourth the two breeds’ contributions. The first simulation is the one
we attached the matrix and plots in the above section.

All the simulations have run for 200 ticks apart from the sixth where
we wanted to see the effect of leaving the simulation running for 1000
ticks. For this reason, we wanted to separate the average of the two rows
on the bottom of the table, to allow us to consider what would happen in
the case we wanted to extended simulations for a longer period. However,
table shows that there is not a huge difference, hence, time is not a relevant
parameter affecting the production function.

Despite the fact that there is a difference in the average including the
sixth simulation and the one excluding the simulation, one should pay at-
tention to the smaller number of simulations in the table (five simulations),
meaning that the averages might have big variances if another simulation
is included in the calculation (since it represents a share of around the 20%
of dataset).

To conclude we can state that ABM approach leads to a prod_average
value of around 1.20 composed by 2.10 of pro_prod_average and 0.30 of
ama_prod_average. That is a relevant statement that will be compared with
other two approaches outlining different results concerning the aggrega-
tion.

2.4 Aggregation techniques

Here, the most relevant section: the discussion on aggregation emerges
and leads us to develop different techniques to decipher. The dynamics
of our model that describes the evolution of the production function over
time can be read in three different ways. These ways of reading the model

12

Plain Micro Simulation Agent Based

diversity factor
√ √

interaction factor
√

emergence factor
√

prod_average 1.28 1.28 1.20

pro_prod_average 1.28 1.71 2.10

ama_prod_average 1.28 0.85 0.30

Table 2: Models for Aggregation

are associated to real approaches through which the aggregation is derived
by taking various interpretations.

The following are the three methods for our aggregation, that are pre-
sented, discussed and confronted, starting from the easiest to the most
complicated one. They are: Plain Model for Aggregation, Micro simulation for
Aggregation and Agent Based for Aggregation. The first two approaches are
very similar to the aggregation techniques used by public authorities re-
sponsible for aggregating, such as the System of National Accounts (SNA)
for instance. This is because the calculation is mainly based on sums or
weighted averages. The third method, though, is a computational tool
that we call "Agent Based Reasoning Machine" that is based on a procedure
agent-based. It seemed appropriate to compare the techniques used today
with an innovative method structured on agent-based technics. Through
the specification of heterogeneous characters of agents and different be-
haviors adopted during the production function, we could map the aggre-
gated results by individual values.

Table 2 summarizes, on the upper part, the key distinguishing features
of the three methods, on the lower part instead, provides the average val-
ues obtained from the three aggregation techniques.

13

2.4.1 Plain Model for Aggregation

The first approach is the easiest. From the name "Plain Model" we have
already an idea concerning the complexity of its structure. It is based on
the availability of resources. In our example the World was composed by
50 times 50, thus, 2500 patches. Each patch owes a quantity of resources,
differently set according to the external map where the maximum amount
of resources was establish exogenously.

In this model, we aggregate the resources finding that the global avail-
ability of resources was 3200. Since we know that patches are 2500 and
agents gain an amount of resources depending on the place where they
are located on, we assign to every agent the same value of resources. In
this way we do not consider either the heterogeneity among agent them-
selves or the variables coming from the interactions.

The assigned value is 1.28. Moreover, we wanted to motivate how we
derive that value but, since no rule is imposed for defining such value,
one could pretend to assign 2 instead of 1.28 due to the fact that some
resources are easier to obtain or, in the opposite, to assign 1 because of the
difficulty of exploiting some soils.

The main idea here is that resources are assigned by, say, an external
entity that takes care of the equalitarianism among the population.

2.4.2 Micro Simulation Model for Aggregation

The second approach is considered in between the other two.
Its name "Micro Simulation Models" means that a diversification among

micro units is done and assortment of agents are now taken into account.
There is thus an improvement with respect to the previous method even
if resources availability plays again an important role and the interaction
are absent. Here, the World resources are still 3200 with an average of 1.28
each patch.

Differently from the previous model, we assign an amount of resources
strictly dependent on agent technology of production. For this reason pro
will have a larger value compared with the ama one. Since technology
of production of agents pro is more efficient, more precisely it is doubled
efficient, we assign resources for 1.71 to pro and 0.85 to ama.

The central concept here is that the external entity assigns resources
depending on the diversity of agents. In this example, shares of resources
are positively correlated with the quality of agents’ technology of produc-
tion.

14

2.4.3 ABM for Aggregation

The third approach is the most complete out of three.
Builded up on the resources availability as well as the other two, it

considers either the heterogeneity factor among agents or their interaction
and emergence components.

Since we have already explained how the values are derived in this
model, we only provide them: pro collect 2.10, ama 0.30 and the average is
1.20.

The reasoning here is not linked on the external entity any more. One
should think that agents now, through an agent based model underlining
different features among individuals, non equal efficiency of their actions
and casualness, are able to gain or lose resources depending on their be-
haviors and non foreseeable factors.

2.4.4 Comparison

Even if the expected amount of resources exists for all the three methods,
only the first two models are able to calculate it. This means that, in the
last model, no rule can be followed to obtain the exact share of resources
that agents pro and ama should have. The only way to have an answer
is running the simulation and aggregate at the end of the process. The
problem is that we will always have different values since simulations
present different internal mechanisms with respect to each other, even if
parameter values do not vary. In other words, despite the fact that we are
aware of the amount of available resources that represent the production
of individuals, we do not know how many can really be exploited and
what are the real ability of agents to exploit them.

We need to stress once again their differences. The simplicity of cal-
culations of the first method allows us to divide the resources according
to the number of available lands that, knowing that will be exploited by
individuals, represent the exact production of the same individuals. The
problem is that no specification about the impossibility of certain land use
has been made. Furthermore, no distinction between the ability of indi-
viduals to use land has been taken into care. Finally, no random variable
which is not be expected has been taken into consideration.

How can we say that this technique is the best in order to derive aggregate
quantities to compare with individual sizes?

Now move the attention to the second method which is not too far
away from the first. Here, resources are allocated according to a criterion
of productive capacity of the agents. Thus, agents with better capacity
utilization will be entitled to more resources than their colleagues who

15

have less advanced production technology. The flaw in this approach, as
in the first, is that it does not reflect the reality: any factor that contributes
to the inability to produce or complicate the agents’ actions of producing
is not considered. According to this model all available resources are fully
accessible and fully usable. No agent or external factor interferes in the
production of any individual agent.

Therefore, is it a valid procedure, according to the readers, to determine the
micro and macro link?

We now analyze the last method, that is based on differences between
agents and random factors that affect individual production functions.

Can we thus state that is closer2 to reality?
In our model, a factor of "instability" has been inserted. It refers to

the effect of damage to surrounding areas after an agent has the resources
extracted in a considered soil. This effect turns out to be one of those
factors that can not be calculated and that are not evaluated by the first two
methods. It depends on individual behavior from which creates different
consequences on the final results. We know that an economic scenario
as a whole presents many of these factors, our challenge is to identify
and calculate them. Besides this, we know that a further difficulty lies in
creating a method of calculation which can be used forever and that is
adaptable to different situations. It would therefore be entirely wrong to
believe that there is only one calculation tool used in different economic
realities. Our research shows that it is wrong to attribute to all economic
actors the same behavior. Attributing the "Representative Agent", Kirman
(1992) and Schorfheide (2011), as the answer to the heterogeneity of an
economy is therefore very simplistic.

Why is the economy so difficult to calculate?

Assuming that

i) an economy has a total amount of resources available for use in the
production process,

ii) agents have distinctive characteristics with respect to their produc-
tion technology and

iii) agents interfere negatively with each other in their production pro-
cess,

2We call it "closer" because unfortunately it remains a simplification of what happens
in an economic environment as a whole.

16

our analysis provides us an important help concerning aggregation. To
associate an aggregate result as the first two methods would be too re-
strictive, to consider an aggregation as the last method would be more
complete indeed.

To conclude, we can say that trying to describe with more details an
economy, the aggregate production function provides lower results than
an approach with fewer details. Whether due to the effect of mutual dam-
aging of agents or the different characteristics of each agent or the inability
to fully exploit all available resources, we can not assert it. What we can
affirm, however, is that each of these variables plays an important role that,
along with random factors, produce the average results on the aggregation
transcribed in Table 2 (column on the r.h.s.). The Agent Based approach
shows a general average (prod_average) lower than the methods where a
summation or a weighted average was used (Plain, Micro Simulation, i.e.
the SNA technics), in addition to a greater differentiation between the two
types of individuals (pro_prod_average, ama_prod_average).

Finally, can we align ourselves with the principle of Vartia attributing to such
decrease in the production function a meaning of negative covariance between
micro and macro level?

Our opinion is that the results lead us to believe that there is a connec-
tion and, through the agent-based approach, we obtain a negative covari-
ance, in the case where aggregation of production function is considered.
For covariance we mean the term coming from Vartia analysis (i.e. the
aggregation error).

3 General conclusions

We come to understand how to create an agent-based model to describe
an economy using NetLogo. Firstly, we build the model that will allow us
to locate the individual functions of production. Secondly, we extract and
load the dataset to another program: R. R is a mechanism able to aggregate
what we have obtained with the model in NetLogo. Then, NetLogo and R
define, at this point, one of the three methods we adopted to aggregate, it
covers the agent-based method. Further, two other methods of aggregation
are presented, they refer to the classic procedures of aggregations. These
procedures are commonly used by public bodies who hold to aggregate.

The central part of our work is the comparison between the classical
procedures and the new agent-based technique developed by us. The re-
sults of these comparisons are different and, for that reason, we believe we

17

need to make our agent-based model as clear as possible3.
The comparison between the classical procedures and agent-based method

reveals that Vartia is feasible and that something new has been discovered.
Vartia, in his works, believes that the outcome difference between indi-
vidual and aggregate functions is reflected by a covariance between the
variables that determine such functions. According to his studies he states
that this covariance, i.e. the error of aggregation, can be, in most cases,
eliminated.

Although we support that this covariance term cannot be easily elimi-
nated in a complex system like an economy, we reckon that something is
missing. The flaw, in our opinion, is that the error of aggregation is not
covered duly: no information on the nature, on the causes and on the con-
sequences are mentioned. Our work is thus aimed at finding information
on this covariance, so we can figure out how to treat it. According to the
comparison of the agent-based and the classical method of aggregation,
we find that the former is smaller than the latter. The error of aggregation
is therefore defined by a negative covariance term. In our example of the
production function, then, the whole is less than the sum of its parts.

How this is possible is difficult to define, may be due to internal pro-
cesses of agent-based simulations, or to assumptions set during the con-
struction of our model or to random factors. That is why we want to give a
clear explanation of the model, in order to leave to readers a very personal
interpretation of the results obtained.

With the invaluable help of readers and people interested in the subject
we can proceed to study this issue that, through the agent-based approach,
is an interesting starting point for a more precise analysis of the economic
scenario surrounding us.

3Appendix C provides a clarification of the model through the use of two techniques
of description: UML language and ODD standard protocol.

18

Acknowledgements

This article is a brief discussion of the more complex work which was the
subject of my thesis research at the University of Turin, Master’s Degree
in Economics.

I would like to express my deep gratitude to Professor Pietro Terna
and Professor Sergio Margarita, my research supervisors, for their patient
guidance, enthusiastic encouragement and useful critiques of this research
work. I would also like to thank Dr. Weijie Chen, for his advice and
assistance in keeping my progress on schedule. My grateful thanks are
also extended to Dr. Ilari Ahola for his help in offering me the resources
in running the R-code.

I also thank Professor Nigel Gilbert, editor of the Journal of Artificial
Societies and Social Simulation (JASSS) and renowned expert on the sub-
ject, for his valuable help.

Finally, I wish to thank Dr. Eleonora Stero and my parents for their
support and encouragement throughout my study.

19

Appendices

A Appendix A: NetLogo code

In this part we will provide a detailed description of the code focusing
on the economic significance rather than the technique of the language of
NetLogo. We divide the code into several parts which will be numbered
and will comment at the end of the language code.

1.
globals [

my-date-and-time
]

turtles-own [
production
consumption
vision
vision-points

]

patches-own [
pproduction
max-pproduction

]

breed [pro a-pro]
breed [ama a-ama]

Starting from the beginning, we define:

• my-date-and-time, a variable that will be used for extracting the
dataset subsequently;
• the variables of our agents, production, consumption, vision and

vision-points allowing us to create heterogeneous agents having
distinct willing to consume or produce in the case of the for-
mer two variables, and capability to find (see) resources in the
latter. production and consumption are also employed as a bench-
mark evolving over time where we can see the composition of
individual functions with respect to the aggregate ones.
• the maximum amount of resources that a patch can have and

the main variable: pproduction that is the productivity of a piece

20

of land. Imagine the amount of resources that a certain land
can offer.

• the breeds, in other words two types of agent having differ-
ent features intrinsically. This subdivision enables us to make a
greater contribution to the diversity of attitudes and preferences
among the agents, in addition to creating a real model that com-
plicates any possible anticipation of the results. Here, the two
breeds are pro from "professional" and ama from "amateur", and
indicate the dissimilar capability to exploit the subsoil, hence
the resources. It can be referred as different level of technology
of production.

2.
to setup

ca
set my-date-and-time date-and-time
setup-patches
setup-pro
setup-ama
reset-ticks

end

Setup procedure sets out the agents and the patches as follow.

3.
to setup-patches

file-open "map1.txt"
;file-open "map2.txt"
foreach sort patches
[

ask ?
[

set max-pproduction file-read
set pproduction max-pproduction
patch-recolor

]
]
file-close

end

Patches have a different composition of resources depending on an
external file that consists of a matrix of numbers between zero and

21

four. Zero will coincide with a land devoid of resources, on the
other, four will be a land rich of resources that can be exploited by
the agents. The possibility of changing the composition of the envi-
ronment is interesting from the point of evaluation the results. We
can thus see how the values vary by changing the soil characteris-
tics and how this affects the individual and aggregate behavior of
population.

setup-patches allows the patches of charge in the number of resources
contained in the external file and to be colored according to the quan-
tity of resources available. If the patch is green it will have a greater
amount of resources, otherwise it will be yellow. The color of the
patches is useful for a graphic representation of the model, there-
fore, has no importance for a mathematical explanation.

4.
to setup-pro

create-pro initial-population
ask pro [
set color black
set shape "dot"
set size 2
move-to one-of patches with [

not any? other turtles-here]
values
set vision-points []
foreach n-values vision [? + 1]
[

set vision-points sentence vision-points
(list (list 0 ?) (list ? 0)

(list 0 (- ?)) (list (- ?) 0))
]
exploit-p pproduction
]

end

Agent pro are graphically defined by the black and, when they are
created, they are placed on a patch where there is no another agent.

vision and vision-points allow us to set the capability of catching re-
sources of each agent, that, as mentioned above, will be different for
everyone.

Command exploit will allow agent to immediately take advantage of

22

the patch where he is located. Soon we will see how such a proce-
dure works and how the exploitation of resources of an agent can
affect other agent’s interests.

5.
to setup-ama

create-ama initial-population
ask ama [
set color red
set shape "dot"
set size 2
move-to one-of patches with [

not any? other turtles-here]
values
set vision-points []
foreach n-values vision [? + 1]
[

set vision-points sentence vision-points
(list (list 0 ?) (list ? 0)

(list 0 (- ?)) (list (- ?) 0))
]
exploit-a_pproduction
]

end

Agent ama are defined with red and presents the same setup proce-
dures as the pro.

6.
to values

set production 0
set consumption 0
set vision random-in-range 1 10

end

values is a common feature of agents, for that reason has a separate
code. It can be easily seen that both the above-mentioned setup
procedures of the two types of agents are connected to this. The
reference code allows us to reset the consumption and production
and to develop the ability to see randomly among agents. Thank
to the latter variable, we improve the factor of heterogeneity in our
model.

23

7.
to exploit-p_pproduction

ask patch-here [
set pproduction (pproduction * pro_p_here)]

ask patches in-radius 1 [
set pproduction (pproduction * pro_p_radius1)]

ask patches in-radius 2 [
set pproduction (pproduction * pro_p_radius2)]

ask patches in-radius 3 [
set pproduction (pproduction * pro_p_radius3)]

end

to exploit-a_pproduction
ask patch-here [

set pproduction (pproduction * ama_p_here)]
ask patches in-radius 1 [

set pproduction (pproduction * ama_p_radius1)]
ask patches in-radius 2 [

set pproduction (pproduction * ama_p_radius2)]
ask patches in-radius 3 [

set pproduction (pproduction * ama_p_radius3)]
end

We have already run into exploit at points 4 and 5, where agents were
set. We defined this procedure as the land exploitation by each agent.
We have also said that this action affects other agent’s interest, but
how?

It can be seen that the two procedures are identical, the only things
that change over the rows are the pro or ama and p or a suffixes that
are used to differentiate the two kinds of agents. exploit command
defines the capability of agents to exploit the soil through the differ-
ent sliders called p_here, p_radius1, p_radius 2 and p_radius3. In eco-
nomic terms, it has to be associated to the technology of production
that differs from one agent to the other. We see that agents in this
model do not restrict the exploitation on the patch where they are
situated only (p_here), but have the power to affect also the patches
in radius 1, 2 and 3 respectively. In other words, when an agent
goes on a patch having the aim of exploiting resources, he will also
cause to all the neighboring patches (in radius 1, 2 and 3) to reduce
the amount of resources own. The significance of such command is
undoubted: since a agent strategy is strictly dependent on another

24

agent action, model acquires the glamor to output a non-trivial re-
sults, linking any micro behavior with different macro explanations.
Running the simulation with the same setting will provide a com-
pletely different outcome. That is what in ABMs programming are
called interactions in a complex system.

Figure 6: Technology of production parameters

Further, as Figure 6 proves, we arrange the above-mentioned sliders
to allow us a variation of the parameters of the production function:
by decreasing the values (shifting the slider to the left) we improve
the technology of production, hence the soil will be better exploited.4

Finally, a better technology of production, say of agents pro, will
cause agents ama to reduce the production drastically. For this reason
agents ama have to move to a new area where pro do not stay around.

8.
to go

if not any? turtles [
stop

4The values in the sliders work as a percentage: if the values is set at 0, it means that
the resources of the soil will be completely exploited, otherwise, if set at 0.50, resources
will be exploited only for half of their total amount. It can be seen that pro have a way
better technology of production with respect to ama.

25

]

ask turtles [
turtle-move
a-eat
p-eat

]

ask patches [
patch-recolor
patch-growback

]

extract-data

tick
end

We come to discover the main procedure of the model: go command.
Three different parts can be outlined here: ask turtles, ask patches and
extract-data. The remaining parts are needed to stop the simulation
when there is no turtle any more and, at the end, tick, used to count
the advancement of the program clock, in other words it counts the
time that passes between one period to the following one.

i) ask turtles contains turtle-move and eat. The former allows agents
to search for patches having more resources to exploit, the latter
instead, is the consumption function and the production func-
tion. Soon we will see in why they can be considered in such a
way.

iI) ask patches implies patch-recolor and patch-growback commands
that will be described at points 11 and 12 respectively. It or-
ders patches to restore their original amount of resources and
to color according to the amount of resources own.

iii) extract-data houses the long procedure at point 15 that is needed
to extract the dataset from NetLogo.

9.
to turtle-move

let move-candidates (
patch-set patch-here (patches at-points vision-points)
with [not any? turtles-here])

26

let possible-winners move-candidates with-max [pproduction]
if any? possible-winners [

move-to min-one-of possible-winners [distance myself]
]

end

tutle-move set the capability of agents to find the most interesting
patches depending on the amount of resources that can be exploited
on them. According with the agents dexterity to see and the quan-
tity of resources, turtles move to the best area where to produce.
Best area can be interpreted either as an area where there is not any
influence from other agents or where resources are as much as possi-
ble.5 Moreover, we impose that agents cannot move to patches where
other agents are already located on.

10.
to p-eat

set production (pproduction)
set consumption (production * 0.2)
ask pro [
exploit-p_pproduction
]

end

to a-eat
set production (pproduction)
set consumption (production * 0.2)
ask ama [
exploit-a_pproduction
]

end

eat commands technically set the production and the consumption
function of both the pro agents and the ama agents. By gaining the
same amount of resources that a patch has (pproduction), we set the
period t production function of an agent; on the other hand, by im-
posing a lump-sum of 20% of production as a consumption, we as-
sign the consumption function. In this case, a consumption can be

5Remember that we have previously uploaded a "Map" where we defined the maxi-
mum amount of resources of every patch. Thus, there may be area with low resources
exploitation and area with high resources exploitation.

27

associated either as a cost of producing (fix cost of exploiting re-
sources) or the amount of consumption an household wants to carry,
given his income coming from his work. Both the analysis are cor-
rect, the important is to distinguish weather we prefer to focus on
a "firm analysis" rather than a "consumer analysis". That is possible
only because our model is a simplified vision of the reality, hence,
both the points of evaluating the matter can be associated with the
outcome.

11.
to patch-growback

set pproduction max-pproduction
end

patch-growback restores the amount of resources that every patches
initially owned. They are set according with the variable max-pproduction
that we have already met. Usually, it can be interpreted as a regener-
ation of resources after the agents work. Note that it requires some
time, for that reason every tick contributes to restore the initial con-
dition. A tick can be seen as the necessary time that enables the
resources restoring.

12.
to patch-recolor

if pproduction <= 0 [set pcolor 95]
if pproduction > 0 and (pproduction <= .5) [

set pcolor 44]
if pproduction > .5 and (pproduction <= 1) [

set pcolor 45]
if pproduction > 1 and (pproduction <= 1.5) [

set pcolor 46]
if pproduction > 1.5 and (pproduction <= 2) [

set pcolor 54]
if pproduction > 2 and (pproduction <= 2.5) [

set pcolor 55]
if pproduction > 2.5 and (pproduction <= 3) [

set pcolor 56]
if pproduction > 3 and (pproduction <= 3.5) [

set pcolor 64]
if pproduction > 3.5 and (pproduction <= 4.5) [

set pcolor 65]
if pproduction > 4.5 [set pcolor 66]

28

end

recolor is a simply way to assign a color depending on the amount of
resources own by patches. It is used for the graphical representation.
Despite the fact that many variables are set in the model, somehow,
it helps us to understand agents’ actions, in addition to give a better
idea of the patch-growback procedure.

13.
to-report random-in-range [low high]

report low + random (high - low + 1)
end

It is a technical procedures that can be associated as an utility to
derive the model outcomes.

14.
to setup-default-values

set initial-population 10

set pro_p_here 0
set pro_p_radius1 .10
set pro_p_radius2 .15
set pro_p_radius3 .18

set ama_p_here .50
set ama_p_radius1 .60
set ama_p_radius2 .65
set ama_p_radius3 .68

end

It sets the default values of our variables. Usually default values are
needed to define the optimal condition of the model. We can decide
to simulate deviations from the optimal condition of the model, for
instance by making variation of the initial values of the variables. In
that way we can see, through running the simulation, how the out-
come changes by changing the parameters of the different variables.
A click on the setup-default-values button on the NetLogo interface will
bring back the values to the original, the optimal ones.

15.
to extract-data

29

file-open (word "pro0production.txt")
ask a-pro 0 [file-print production]
file-close

file-open (word "pro1production.txt")
ask a-pro 1 [file-print production]
file-close

file-open (word "pro2production.txt")
ask a-pro 2 [file-print production]
file-close

file-open (word "pro3production.txt")
ask a-pro 3 [file-print production]
file-close

file-open (word "pro4production.txt")
ask a-pro 4 [file-print production]
file-close

file-open (word "pro5production.txt")
ask a-pro 5 [file-print production]
file-close

file-open (word "pro6production.txt")
ask a-pro 6 [file-print production]
file-close

file-open (word "pro7production.txt")
ask a-pro 7 [file-print production]
file-close

file-open (word "pro8production.txt")
ask a-pro 8 [file-print production]
file-close

file-open (word "pro9production.txt")
ask a-pro 9 [file-print production]
file-close

**** **** **** **** ****

30

file-open (word "ama10production.txt")
ask a-ama 10 [file-print production]
file-close

file-open (word "ama11production.txt")
ask a-ama 11 [file-print production]
file-close

file-open (word "ama12production.txt")
ask a-ama 12 [file-print production]
file-close

file-open (word "ama13production.txt")
ask a-ama 13 [file-print production]
file-close

file-open (word "ama14production.txt")
ask a-ama 14 [file-print production]
file-close

file-open (word "ama15production.txt")
ask a-ama 15 [file-print production]
file-close

file-open (word "ama16production.txt")
ask a-ama 16 [file-print production]
file-close

file-open (word "ama17production.txt")
ask a-ama 17 [file-print production]
file-close

file-open (word "ama18production.txt")
ask a-ama 18 [file-print production]
file-close

file-open (word "ama19production.txt")
ask a-ama 19 [file-print production]
file-close

31

end

The last, is a technical procedure to extract the dataset, creating for
each agent a text file of his production over time (firstly for pro and
subsequently for ama). This tool is needed for aggregation with R.

32

B Appendix B: R code

This section is for understanding the logic of importing the NetLogo dataset
to R and giving some explanations concerning the aggregation of Micro
data to meaningful Macro level. For simplicity we decided to use R for
data processing, due to the fact that it has excellent functions to communi-
cate with NetLogo. We will attach the R code providing a brief comments
on its main parts.

i) We import the dataset concerning the production function referred
to the agents pro. The following procedures assign to every variable
of each agent a different name, in order to simplify the next step of
aggregation. For instance, the production of pro0 is called pro0prod
by R. Same for all the other variables of every agent pro.

pro0production <- read.table("pro0production.txt")
pro0prod <- pro0production[,1]

pro1production <- read.table("pro1production.txt")
pro1prod <- pro1production[,1]

pro2production <- read.table("pro2production.txt")
pro2prod <- pro2production[,1]

pro3production <- read.table("pro3production.txt")
pro3prod <- pro3production[,1]

pro4production <- read.table("pro4production.txt")
pro4prod <- pro4production[,1]

pro5production <- read.table("pro5production.txt")
pro5prod <- pro5production[,1]

pro6production <- read.table("pro6production.txt")
pro6prod <- pro6production[,1]

pro7production <- read.table("pro7production.txt")
pro7prod <- pro7production[,1]

pro8production <- read.table("pro8production.txt")
pro8prod <- pro8production[,1]

33

pro9production <- read.table("pro9production.txt")
pro9prod <- pro9production[,1]

ii) The same procedures as the previous ones, with the only difference
that now they assign the R names for agents ama dataset.

ama10production <- read.table("ama10production.txt")
ama10prod <- ama10production[,1]

ama11production <- read.table("ama11production.txt")
ama11prod <- ama11production[,1]

ama12production <- read.table("ama12production.txt")
ama12prod <- ama12production[,1]

ama13production <- read.table("ama13production.txt")
ama13prod <- ama13production[,1]

ama14production <- read.table("ama14production.txt")
ama14prod <- ama14production[,1]

ama15production <- read.table("ama15production.txt")
ama15prod <- ama15production[,1]

ama16production <- read.table("ama16production.txt")
ama16prod <- ama16production[,1]

ama17production <- read.table("ama17production.txt")
ama17prod <- ama17production[,1]

ama18production <- read.table("ama18production.txt")
ama18prod <- ama18production[,1]

ama19production <- read.table("ama19production.txt")
ama19prod <- ama19production[,1]

iii) We plot the individual densities of every single agent’s production
function (Figure 4 and Figure 5). Soon we will comment on those

34

outcomes.

par(mfrow=c(3,4))

plot(density(pro0prod))
plot(density(pro1prod))
plot(density(pro2prod))
plot(density(pro3prod))
plot(density(pro4prod))

plot(density(pro5prod))
plot(density(pro6prod))
plot(density(pro7prod))
plot(density(pro8prod))
plot(density(pro9prod))

par(mfrow=c(3,4))

plot(density(ama10prod))
plot(density(ama11prod))
plot(density(ama12prod))
plot(density(ama13prod))
plot(density(ama14prod))

plot(density(ama15prod))
plot(density(ama16prod))
plot(density(ama17prod))
plot(density(ama18prod))
plot(density(ama19prod))

iv) We calculate the average of pro’s production functions, we ask R to
show its time-series matrix and we plot the regression graph.

pro_prod_average <- (pro0prod + pro1prod + pro2prod
+ pro3prod + pro4prod + pro5prod + pro6prod + pro7prod
+ pro8prod + pro9prod)/10
pro_prod_average

plot(pro_prod_average)

35

v) Same as the last procedure even if now it refers to the ama.

ama_prod_average <- (ama10prod + ama11prod
+ ama12prod + ama13prod + ama14prod + ama15prod
+ ama16prod + ama17prod + ama18prod
+ ama19prod)/10

ama_prod_average

plot(ama_prod_average)

vi) We calculate the general average of the production functions of all
agents called prod_average. Then, we ask for the time-series matrix,
its regression graph (Figure 2) and density plot (Figure 3).

prod_average <- (pro0prod + ama10prod + pro1prod + ama11prod
+ pro2prod + ama12prod + pro3prod + ama13prod + pro4prod
+ ama14prod + pro5prod + ama15prod + pro6prod + ama16prod
+ pro7prod + ama17prod + pro8prod + ama18prod + pro9prod
+ ama19prod)/20

prod_average

plot(prod_average)
plot(density(prod_average))

vii) We aggregate the individual production functions in order to find
the macro level of production. In others words, by summing up the
individual production functions, we find the general product (hence,
GDP). Then, we ask for the time-series matrix, the regression graph
and the density plot.

prod <- (pro0prod + ama10prod + pro1prod + ama11prod
+ pro2prod + pro4prod + pro6prod + pro8prod prod

36

+ ama12prod + ama14prod + ama16prod + ama18prod
+ pro3prod + ama13prod + pro5prod + ama15prod
+ pro7prod + ama17prod + pro9prod + ama19prod)

prod

plot(prod)
plot(density(prod))

viii) We conclude by asking the value regarding the average of the pro-
duction functions of pro, ama and the general prod_average within the
considered period (200 ticks) respectively. This will be the tool to
compare different simulations (in the following section named Sim-
ulations). The aim is underlining the variances between interactions,
basing the models with the same parameter variables. We will soon
discover that results will be always different, despite the fact the
parameters do not vary between models (Table 1 will show such dif-
ferences). Notice that, in addition to the parameter values among
simulations, we also need to consider the agents’ features that do
always change as soon as we press on setup button.

mean(pro_prod_average)
mean(ama_prod_average)
mean(prod_average)

37

C Appendix C: Representations of Simulation for
Aggregated Consumption and Production function

We have two main problems concerning the descriptions of Agent Based
Model simulations:

i) there is no standard way for describing them and

ii) ABM are often described verbally without a clear indication of the
equations, rules, and schedules that are used in the model.

For such two reasons, in order to better explain the model, we both apply
the UML language and the ODD standard protocol.

Despite the fact that we believe the UML approach is awkward espe-
cially for non computer sciences experts, we would apply either the UML
or the ODD standard protocol. Since ODD standard protocol has a non
quantitative nature and most of the explanations are simply verbal expo-
sitions, we presume it would be, in a sense, easier for readers.

The following are the main differences between the two overtures. We
first start with the UML language, providing a general overview, depicting
all its diagrams and describing them. Then, we conclude by outlining
the main steps of the ODD standard protocol after having explained the
general intuition of each stage.

C.1 Unified Modeling Language (UML)

Unified Modeling Language (UML), Bersini (2012), is a standardized general-
purpose modeling language in the field of object-oriented software engi-
neering; It can be seen as a language rather than a methodology, it is based
on four main diagram:

i) Class diagram illustrates the classes and their relationships, such as
association, composition and inheritance;

ii) Sequence diagram represents how objects interact and exchange mes-
sages over time. It allows developers to trace the program while it
executes and to follow the way objects interact in memory;

iii) State-Transition diagram is able to follows the state-transitions of
one complicated class of agent over its lifetime (for instance the dy-
ing transition as soon as the agent’s internal energy goes below a
minimum threshold). It always starts from an initial state (the birth
of the object), and ends at a final state (the death of the object);

38

iv) Activity diagram is best understood as a throwback to the more tra-
ditional procedural types of diagram (called "flow charts"), it helps
programmers when dealing with the more procedural instructions
flow related parts of their code. This diagram is often seen as an
alternative to the state diagram. The advantage of this diagram over
the state diagram lies in its ability to cover the behaviors of collabo-
rating elements (in some such cases it can also become an alternative
to the sequence diagram).

Both the exact order of diagrams to be realized and the correct drawing
of each diagram are not part of the language but rather the result of correct
practice acquired through experience.

The benefit brought by UML becomes more marked as models grow
in complexity (reflected by the number of classes). Note, however, that
UML has been advocated in other scientific fields such as biology, chem-
istry or physics. Hence, it might allow us to extend our analysis on the
aggregation issue.

C.1.1 Class diagram

"...Establishing classes and their interrelationships is more of an art than a sci-
ence...requires a lot of training, development experience, the knowledge of some
good recipes..." Bersini (2012)

The Class diagram is considered the most convenient way for classes
and their relationships to be illustrated. Despite that, it is not suitable for
establishing what the necessary classes are and how their interrelations
should be.

Figure 7 depicts a Class diagram of our simulation model for aggre-
gated production function. The classes of our model are: World that in-
cludes all the actors of the simulation, Patch that is the site where agents
and resources (pproduction) are, Resource is own by every patch in a differ-
ent quantity and is looked for by agents and Agent that, by moving and
looking for resources, can produce and consume part of their production.
A further subdivision of agents can be done by differentiating their capa-
bility to produce, hence their technology of production: pro are the most
efficient breed and ama have exactly the same chances to find resources
but a lower productivity.

It can be easily seen that plenty of associations appear. For instance,
when we see a "1 - 1" association linking Agent and Patch, it means that

39

an agent can be placed in one and only one patch at one time. Such
association is needed for agents to interrogate if the patch is free, in order
to decide wether to move there or, in the case it is not available because
another agent is already located there, to move to somewhere else place.

As can be notice, an association can be either unidirectional (World-
Agent) or bidirectional (pro-Resource). In the first case, it means that the
message between the two classes flows in one direction only, as the arrow
indicates. A label is commonly associated with the message representing
a name of the attribute referring to the class.

An association "1 - 8" of Patch is a directional auto-association meaning
that each site is directionally associated to its eight neighbors. The eight
sites around a patch can be all taken over in the only case where no agent
is already located there.

The diamond of an association is called "composition" and indicates
a stronger form of association. A composition between two classes states
that the disappearance of the contained object leads to the elimination of
the object as well. For instance, if World disappears, all its objects will do
the same automatically.

A "1 - 0..* " relationship between two classes means that any object
of the first class is associated or composed with an arbitrary number of
objects of the other class. Dashed line represents a dependency and it
is a weaker form of association, where the arrow shows the dependency
from the dependent object to the object it depends on. For instance, pro
has a dependency on Resource but, since a single agent is not necessarily
always associated with the same resource, we need a dashed line to depict
a weaker relationship.

"Inheritance" is another type of association within the class diagram. It
is drawn from Agent class to the two subclass of pro and ama. Inheritance
allows for subclasses to have specific attributes, methods or the redefini-
tion of some methods already present in the superclass.

The abstracts contained in the class, such as black color or more efficient
of pro class, refer to different features between the two subclasses of agents,
while the abstracts of agents are common to all. An example is the differ-
ent technology to produce distinguishing the pro from the ama, while the
way to move is the same for both.

Behavior class

A different kind of class diagram is represented by Behavior classes that is
used to distinguish static objects from processes. The latter describes how
objects change over time. Same as before, they are mostly adopted for
explaining complex situation where an individual behavior becomes hard

40

to keep trace. Figure 8 provides a meaningful explanation concerning
agent pro1’s behavior and the process that generates interactions in the
system.

A bridge design patterns could be employed to attach the behavior class
in Figure 8 to the class diagram in Figure 7. In such a case the behavior
linked with the inheritance depicts the behavior of all agents providing a
further information of the simulation model mechanisms.

Finally, another tool helps us to better understand: the decorator design
patterns needed to assess the separation between of fundamental charac-
teristics of a class diagram from a set of added functionalities (decorators)
varying from one object to another. It can be seen as a representation of
different subclasses and their main features in a more flexible way than
simply providing a list of subclasses.

C.1.2 Sequence diagram

Despite behavior class represents a good explanation of the objects change
over time, a more complete picture is given by the Sequence diagram. In-
teractions between objects and emerging messages coming from such re-
lationships are the base of the diagram structure. Thank to this character,
the representation allows developers to trace the program while it executes
and to follow every single interaction of the observed objects.

Figure 9 draws the interaction of an agent starting from world where
he moves to the patch x looking for a free place to stay. The query is thus
see(resources) since the goal is to find both a free place (better is if free of
agent also in its neighboring) and a site rich of resources. Next step is
do(patch y) once resources have been exploited. Sequence diagram is the
best tool to trace the sequential steps and the execution logical flow of
the program. Its goal is to maintain simplicity and readability within the
several steps portraying the system.

Unfortunately, the diagram does not provide an optimal solution for
the object interactions but does evaluate the potential flows of execution
and the successive responsibilities of every single object only. As can be
seen, rectangles are placed on the life line indicating the method duration.
They outline all the exchanged messages between objects.

Commands loop and alt enable objects to act in a sequential loop estab-
lishing a mechanism of sequential steps starting with the former command
and ending with the latter. No detail concerning the nature of the agents
selections is included, nor wether they are taken in a random or an ordered
way.

The query agent patch y = null is used to define if the place is free,
and in the case it does, an agent will move to the free site set agent(here)

41

(patch y), causing an updating of the site status that now turns to be busy.
Otherwise, else is run.

C.1.3 State diagram

State diagram or state-transition diagram is designed in Figure 10. It refers
to a single agent pro1 and its aim is to follow the state-transition of one
complicated class of agent over its lifetime. In the figure the agent deals
with four actions only, called states, where transitions are traced between
each other.

Diagram starts with the initial state, usually associated to the birth of
an object and graphically shown with a black disk. It ends at a final state
with a black disk inside a white disk. In our case, since we do not have
any constraint, agents do not disappear from the world. For that reason,
the final state is missing.

Transitions are based on guards, that is the UML name for transition
conditions. A guard defines the motivation why an agent should move
from the state of Moving to Exploiting. In the example, the reason is the
presence of resources that have been caught off by agent while moving.
The agent will go back to move as soon as resources on site have been
exploited: pproduction=beta(max-pproduction).

State design pattern can be also associated with the above-mentioned
class diagram, furnishing a complete framework: each state is linked with
every possible transition. Logically, that association is needed in a case of
a complicated system having dependence between objects and their state.
Modularization of behavioral blocks is thus required to have a meaningful
explanation of such complexity.

C.1.4 Activity diagram

Activity diagram, frequently associated with his forefather procedural dia-
gram called flow charts, consists a relevant aid when dealing with the more
procedural instructions flows related parts of their code. Considered as
an alternative with respect to the state diagram, it hosts the personal pro-
grammer perception of the model. It shows the dynamic of the objects
through a succession of activities rather than a succession of states. The
advantage is its capability to cover the behaviors of collaborating elements
(same as the sequence diagram).

Figure 11 shows the partition of activities between two objects: Agent
(pro1) and Resources (pproduction), where the terms in parenthesis are the
name used in the code. The two black bars mark the beginning and the end
of an activity. For instance, while pro1 exploits, he decreases the amount

42

of resources on site, increase both his consumption and production at the
same time.

To conclude, UML language can be used in a multitude of ways and
it represents one of the major tools allowing a better understanding of a
simulation model, especially if complexity plays an important role and
leads to difficulties coming up from the intrinsic mechanism of objects’ in-
teractions. The language is formal but, as we have seen, use-methodology
is unrestrained and, for that reason, programmer has the chance to cus-
tomize it and to use in the best way he would to.

The followings are the 5 Figures of the above-explained diagrams.

Figure 7: Class diagram

C.2 ODD Standard Protocol

"...there is no standard protocol for describing such simulation models, which can
make them difficult to understand and to duplicate." Grimm et al. (2006)

The apt quotation above can be found in the abstract of the Grimm
and Railsback paper of 2005, where they propose a standard protocol for
describing ABMs. Their aim is to provide a simpler and quicker way to
understand simulation models since no rule are set for a standard to follow
in the representations of ABMs.

We give a general overview of the ODD protocol first in order to be
better able go through each component later. Then, we apply the standard
protocol to our model representation.

43

Figure 8: Behavior class

Figure 9: Sequence diagram

ODD overview

Odd protocol combines two elements:

i) a general structure for describing ABM, thereby making a model’s
description independent on its specific structure, purpose and form
of implementation and

ii) separation of the verbal considerations from a mathematical descrip-
tion of the equations, rules, and schedules that constitute the model;

44

Figure 10: State diagram

Figure 11: Activity diagram

Allowing both readers and writers to understand the main features
of the model.

Further, a standard protocol would make reading and understanding
the model easier because readers would be guided by their expectations.

The first idea of a standard protocol, that is PSPC + 3 protocol is re-
ferred to the initials of first four elements of the protocol (purpose, struc-
ture, process, concepts) and "+3" referred to the remaining three elements.

45

I would use for our model instead, the "revised PSPC + 3 protocol",
called "ODD", Grimm et al. (2010), which stands for the three blocks of
elements "Overview", "Design concepts", and "Details" since the names of
some elements have been changed.

Figure 12 shows that this protocol consists of three blocks (Overview,
Design concepts, and Details), which are subdivided into seven elements:
Purpose, State variables and scales, Process overview and scheduling, De-
sign concepts, Initialization, Input, and Submodels:

i) The Overview consists of three elements (Purpose, State variables
and scales and Process overview and scheduling), which provide an
overview of the overall purpose and structure of the model. Readers
very quickly can get an idea of the model’s focus, resolution and
complexity;

ii) The Design concepts does not describe the model itself, but rather
describes the general concepts underlying the design of the model
and

iii) The Details, includes three elements (Initialization, Input and Sub-
models) that present the details that were omitted in the overview.
In particular, the submodels, implementing the model’s processes,
are described in detail. All information required to completely re-
implement the model and run the baseline simulations should be
provided here. If space in a journal article is too limited, on-line
appendices or separate publications of the model’s details should be
provided.

The logic behind the ODD sequence is: context and general informa-
tion is provided first (Overview), followed by more strategic considera-
tions (Design concepts), and finally more technical details (Details)

The benefits of the protocol become obvious in the test applications.
The most important benefits are:

• The model description becomes easier to write. It is no longer neces-
sary to waste a lot of time thinking about how to structure the text,
because the protocol make those decisions for the authors so that
they simply could follow the template;

• The model description becomes more complete because the proto-
col reminds the authors of important details that they might have
otherwise forgotten to include in the documentation;

• The model description becomes easier to understand. In one case, for
example, the protocol can suggest a context for describing a concept
that is confusing to the reviewers of the original paper and

46

• The protocol is not only useful for individual-based or agent-based
models, but for bottom-up simulation models in general, for example
grid-based models.

A standard protocol for describing a simulation for aggregated con-
sumption and production function

C.2.1 Purpose

The purpose of the model is to create a dataset of aggregated production
functions of a set of agents that interact each other. There are two different
breeds of agents: pro and ama distinguishing graphically with black, in
the first case, and red, in the second. Production function is determined
by the capability to see that each agent has, in addition to the technology
of production. The latter is more efficient for agents pro with respect to
ama. The two functions are bolstered by the agent actions of exploiting
the resources own by the ground: the patches. Resources are set initially
with an external map making out the composition of the field. After the
agent exploitation, they regrow according to such a map. The unforesee-
able determination of agents productions and consumption is due to the
capability they have to affect the neighboring patches while they are ex-
ploiting resources from the ground. An agent will go exploiting a site as
far as possible from another agent. The reason is to avoid any loss coming
from the closeness. Many variations to parameter variables can be done
allowing the analysis of system reactions.

C.2.2 Entities, state variables and scales

The structure of the model system is listed as following:

• Agents: There are 10 agents pro and 10 agents ama that are located
randomly moving to look for resources. They cannot neither die nor
reproduce, they do not have any age. The only counters they have
are consumption and production. They present different capability
to see, randomly set, and different technology of production. The
pro production is more efficient than the ama one.

• Landscape: The World is composed by 50 times 50 squares: the patches.
They have different color according with the amount of resources
they own. Color blue means no resources, starting from yellow, that
is the minimum amount of resources, they turn to different color
until green that marks the maximum amount of resources. Such a
quantity of resources is set by an external map providing the max-
imum amount of resources every patch can have. The map can be

47

changed to evaluate the different results that can be obtained. Re-
sources are looked for agents that exploit them as much they can.
Resources can regrow once a tick passes according with the external
map.

• Variables and parameters values: Simulations can be tested by modi-
fying the sliders on the NetLogo interface. The following variables
and parameters values can be changed: the number of the popula-
tion and the technology of production of both agents pro and ama
regarding either the site where they are located on (p_here) or from
all the patches set in radius 1 (p_radius1) to the ones in radius 3.
The higher the technology of production the more agents gain from
the exploitation and the more they want to stay far from each other
while locating in a site. Further, the more the number of the popula-
tion the less resources per capita, hence the less the production and
consumption.

C.2.3 Process overview and scheduling

At this stage, a meaningful flow charts can provide the best scheduling and
overview of the process. I would refer, thus, to the Activity diagram of
Figure 11 covered in the previous section.

C.2.4 Design concepts

• Emergence: Resources of patches, Production and Consumption counter
of agents depend on the degree of exploitation made by individuals.
Such a composition is also linked either with the agent’s capability
to see or the external map with the imposed maximum amount of
resources. The variation of the parameters values by the sliders can
also affect the emergence.

• Adaptation: The improvement of the agent’s capability to see can
mark a positive betterment of consumption and production. Same
for any rise in technology of production.

• Fitness: In the model the concept of fitness is represented with the
amount of production each agent is able to make. Consumption is
linked. Concerning the patches, it is the degree of resources own.
It is also represented with the color a patch has. The more green
the more the resources. The more yellow the less the resources. Blu
means no resources at all.

48

• Prediction: The only prediction agents can have is the following: by
imitating the action of other agents an individual is 100% sure about
the reduction of his own production. He has better avoid reproduc-
ing someone else’s actions.

• Sensing: Individuals need to consider the composition of the soil
looking for the maximum amount of resources as possible and the
presence of other agents in neighboring areas trying to skip any site
already occupied.

• Interaction: In the model, an interaction can be identified into the
consequence of the exploitation of resources from the soil. The action
of exploiting a patch where an agent is locates, is also spread on
the surrounding patches (until the patches in radius 3). In other
words, while agent is located on patch14 for instance, he exploits the
resources either of patch14 or all surrounding patches from radius 1
to radius 3.

• Stochasticity: Stochastic elements are the degree of agent’s capability
to see resources, agent technologies of production, the different maps
of the resources composition of soil and the agent’s movements.

• Collectives: Agents are not grouped into collective. The only possible
distinction, that is far from grouping, can be associated with the two
breeds: ama and pro present personal disjointed features.

• Observation: The aim of the simulation model is to collect a dataset
of the agent’s production over their lifetime, in order to make a com-
parison between the individual values and the aggregated ones.

C.2.5 Initialization

Environment is created by importing an external map of values identifying
the maximum amount of resources of every patch. According to these
values the color of each patch is defined.

The initial number of agents is set at 10 pro and 10 ama. The former are
black and the latter red. They have different technologies of production
set at the beginning according with "default values". As default values, the
pro are able to exploit 100%, 90%, 85% and 82% the patch where they are
located on, the patch in radius 1, in radius 2 and in radius 3 respectively.
The ama instead are able to exploit 50%, 40%, 35% and 32% the patch
where they are located on, the patch in radius 1, in radius 2 and in radius
3 respectively.

49

Initialization is always the same except for the stochastic elements
described previously, such as the degree of agent’s capability to see re-
sources, the different maps of the resource compositions of soil and the
agent’s movements.

C.2.6 Input data

The model does not use input data to represent time-varying processes.

C.2.7 Submodels

Since a detailed description of the model code has already been provided
within the preceding section (named NetLogo code), we do not reproduce
the previous step, rather we invite readers to go through the section 6
again, in the case something is not completely clear.

Figure 12: ODD protocol

50

References

Bersini, H. (2012). Uml for abm. Journal of Artificial Societies and Social
Simulation 15(1), 9.

Burbidge, J. & Cuff, K. (2005). Capital tax competition and returns to
scale. Regional Science and Urban Economics 35(4), 353–373.

Epstein, J. & Axtell, R. (1996). Growing artificial societies: social science from
the bottom up. MIT press.

Felsen, M. & Wilensky, U. (2007). Netlogo urban suite-economic disparity
model.

Friedman, M. (1957). The permanent income hypothesis.

Godley, W. (1999). Money and credit in a keynesian model of income
determination. Cambridge Journal of Economics 23(4), 393–411.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J.,
Goss-Custard, J., Grand, T., Heinz, S., Huse, G. et al. (2006). A stan-
dard protocol for describing individual-based and agent-based models.
Ecological modelling 198(1), 115–126.

Grimm, V., Berger, U., DeAngelis, D., Polhill, J., Giske, J. & Rails-
back, S. (2010). The odd protocol: A review and first update. Ecological
Modelling .

Kirman, A. (1992). Whom or what does the representative individual
represent? The Journal of Economic Perspectives 6(2), 117–136.

Schorfheide, F. (2011). Estimation and evaluation of dsge models:
progress and challenges. Tech. rep., National Bureau of Economic Re-
search.

Squazzoni, F. (2012). Agent-Based Computational Sociology. Wiley.

Suoperä, A. & Vartia, Y. (2011). Analysis and synthesis of wage determi-
nation in heterogeneous cross-sections. HECER Discussion Paper 1(331).

Törnqvist, L., Vartia, P. & Vartia, Y. (1985). How should relative
changes be measured? The American Statistician 39(1), 43–46.

Vartia, Y. (1976). Relative changes and index numbers, vol. 1. Research
Institute of the Finnish Economy Helsinki.

Vartia, Y. (2008a). Integration of micro and macro explanations. HECER
Discussion Papers 1(239).

51

Vartia, Y. (2008b). On the aggregation of quadratic micro equations.
HECER Discussion Papers 1(248).

Vartia, Y. (2009). Whole and its parts: Micro foundations of macro be-
haviour. HECER Discussion Papers 1(257).

Wilensky, U. (1999). Netlogo. Center for Connected Learning and Computer-
Based Modeling .

52

DEPARTMENT OF ECONOMICS AND STATISTICS
UNIVERSITY OF TORINO

Corso Unione Sovietica 218 bis - 10134 Torino (ITALY)
Web page: http://esomas.econ.unito.it/

	Frontespizio definitivo 16 1
	paperLucaBarone
	Frontespizio definitivo 16 2

