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Abstract  
To show that a mathematical model exhibits chaotic behaviour does not prove that chaos is 
also present in the corresponding data. To convincingly show that a system behaves 
chaotically, chaos has to be identified directly from the data. From an empirical point of 
view, it is difficult to distinguish between fluctuations provoked by random shocks and 
endogenous fluctuations determined by the nonlinear nature of the relation between 
economic aggregates. For this purpose, chaos tests test are developed to investigate the basic 
features of chaotic phenomena: nonlinearity, fractal attractor, and sensitivity to initial 
conditions. 
The aim of the paper is not to review the large body of work concerning nonlinear time 
series analysis in economics, about which much has been written, but rather to focus on the 
new techniques developed to detect chaotic behaviours in the data. More specifically, our 
attention will be devoted to reviewing the results reached by the application of these 
techniques to economic and financial time series and to understand why chaos theory, after a 
period of growing interest, appears now not to be such an interesting and promising research 
area. 
 
Key words: economic dynamics, nonlinearity, tests for chaos, chaos  
JEL code: B59, E20 
 

1. Introduction 
The approaches used to address the analysis of economic time series can be classified into 
two main categories: linear and nonlinear. Linear methods allow one to grasp all the regular 
structures in a data set assuming that the intrinsic dynamics of a system are governed by 
linear laws and, most importantly, that small causes produce small effects1. However, these 
methods that investigate the dynamics of time series often leave significant features 
unexamined and unexploited, highlighting the fact that real economic time series do not 
show the kind of regularity assumed by them. Irregular frequencies and different amplitudes 
are the real features of fluctuations in economic data. 
To explain the stochasticity in real-life observations, economists have included stochastic 
considerations in their speculations. However, these stochastic considerations that have 
                                                        
1
 Kantz H., Schreiber T., (1997) 
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entered economic analysis are very much a compromise. Stochastic exogenous disturbances 
were superimposed upon usual linear deterministic models to produce the stochastic 
appearance of real economic time series. However, the linear stochastic equations were 
shown to be inadequate to fit the economic phenomena well. Therefore, alternative answers 
were sought by economists in the nonlinear approach. 
In the literature, there many examples of nonlinear methods used to analyse time series. 
These are the so-called “ARCH-type” models (autoregressive conditional heteroskedasticity 
models) proposed by Engle (1982) and generalised by Bollerslev (1986). Among the 
“ARCH-type” models - Exponential GARCH, Asymmetric Power ARCH, Threshold 
GARCH - the so-called integrated model (IGARCH) and fractionally integrated model 
(FIGARCH) have been the most popular recently. These models are based on the assumption 
that data are nonlinear stochastic functions of their past values.  
However, it is also possible that data can be generated by deterministic processes. Nonlinear 
deterministic systems with a few degrees of freedom can create output signals that appear 
complex and mimic stochastic signals from the point of view of conventional time series 
analysis. Certain deterministic nonlinear systems may show chaotic behaviours, or better 
qualitative different behaviours are produced by one or more parameters. There are different 
signs, or invariants, that are representative of chaos in a system: nonlinearity, dependence on 
initial conditions, and presence of an attractor with fractal dimension, known as a strange 
attractor. Based on these signs, several tools have been developed in recent years to 
investigate the chaotic properties of a system from a time series. These tools are generally 
divided into two categories: metric and topological. The first, which includes the Lyapunov 
exponent, the correlation dimension, and BDS tests, is characterised by studying the 
distances between points on the attractor. The second, which is similar to the close return test 
and recurrence analysis, though based on the geometric properties of the asymptotic structure 
of a dynamic system, is characterised also by being applicable to short data sets. 
Consequently, it is fair to assume that a time series with a seemingly random pattern, an 
inherent nonlinear dependence, lower estimates for correlation dimension, and positive 
estimates of the largest Lyapunov exponent could be a manifestation of underlying chaotic 
dynamics. 
Because as researchers we are interested in gaining better insight and understanding of the 
underlying dynamics of economic phenomena to provide reliable predictions, we must be 
conscious of different approaches and tools to perform this goal. Thus, our aim is not to 
review the large body of works concerning nonlinear time series analysis, about which much 
has been written, but rather to focus on those analysis techniques developed to detect chaotic 
behaviours in economic data. More specifically, our attention will be devoted to reviewing 
the basic chaos tests, highlighting their ability and limitations, and studying the results 
reached by their application in analysing economic and financial time series. The motivation 
is to understand why chaos theory, after a period of growing interest, appears now to be not 
such an interesting and promising research area in economics. 
The rest of this paper is organised as follows. In Section 2, the main methods used in chaotic 
tests are introduced and evaluated. Sections 3 and 4 synthesise the results of application of 
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chaotic tests in economic and financial data. In Section 5, the pitfalls in the application of 
these methods are highlighted, and some concluding comments are presented in Section 6. 

2. New tools for analysing economic time series 
Although it sounds like an oxymoron, the concept of deterministic chaos has gained 
popularity in many fields, including economics and finance. This is because chaos theory 
stimulates the search for a mechanism that generates observed movements in real economic 
data and that minimises the role of exogenous shocks. In this sense, it represents a shift in 
thinking about methods for studying economic activity and in the explanation of economic 
phenomena such as fluctuations, instability, crises, and depressions. 
The behaviour of chaotic systems does not unfold in a linearly predictable, conventional 
cause-and-effect manner over time. When viewed as a whole, these systems manifest 
definite patterns and structures, but their future direction cannot be predicted from their past 
history. 
While the stochastic trends of irregular systems are explained by random shocks external to 
the systems, in chaotic systems, the fluctuations are within the system. They are the result of 
complex interactions among the system’s elements, and although it is difficult to predict 
system behaviour, the same cannot be said of the process that created it, as it is deterministic. 
There is no standard definition of chaos (Ditto and Munakata, 1995). It is generally 
associated with systems with boundaries (Cheng and Tong, 1992) that are ergodic (Jensen, 
1993), characterised by a strange attractor with dynamics sensitive to initial conditions 
(Eckmann and Ruelle, 1985) and a positive Lyapunov exponent (Wolf et al., 1985). 
In 1986, Devaney defined XXf →:  as a chaotic map in X if 
• (i) f  is characterised by sensitivity to initial conditions; 
• (ii) f  is topologically transitive; 
• (iii) the set of points of f  are dense in X . 
In the Devaney definition, some basic features of chaos systems are stressed, such as 
unpredictability (i), indecomposability (ii), and deterministic behaviour (iii). A more 
complete definition is provided by Kellert (1992), who defines chaos theory as the 
qualitative study of unstable aperiodic behaviour in deterministic nonlinear dynamical 
systems.  
Therefore, we can consider a system to be chaotic 

• If it is nonlinear. Of course, not all nonlinear systems are characterised by chaos, but 
it is certain that a linear system cannot be chaotic. 

• If is generated by deterministic rules. If we know the state of the universe at some 
initial time, we should be able to determine its state at any other time. 

• If is sensitive to initial conditions. To be deterministic in the case of chaotic systems 
does not mean to be predictable, but small changes in the initial state can lead to 
radically different behaviour in the final state. This sensitivity2 to initial conditions 

                                                        
2
“Recently a class of systems have been discovered whose behaviour is much more complex and fails the 

continuity condition in a radical way. These are the chaotic systems. No matter how close two systems are 
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makes such systems unpredictable and therefore difficult to follow their evolution in 
the time. 

• If is characterised by a strange attractor. To say that a system is unpredictable is not 
to say that it lacks coherence or structure. Nonlinear systems that appear to explode 
into unpredictable outcomes do possess a deep structure, called an attractor. An 
attractor is an organising principle, an inherent shape or state to which a 
phenomenon will always tend to return as it evolves. In particular, chaotic systems 
are characterised by strange attractors that are topologically distinct from a periodic 
orbit or a limit cycle. Such constructs are called fractal attractors because they have a 
fractal dimension. 

Economists have used linear equations to model most economic phenomena, even if they are 
inherently nonlinear, because these equations are easy to manipulate and usually yield 
unique solutions. When the irregular behaviour of some nonlinear relations is found, it is not 
appreciated by economists because it is difficult and intractable to deal with, so it is 
explained as being stochastic or linearised. Conceptualising, measuring, and modelling 
cause-effect linear relationships in economic systems is sometimes ineffective and 
inefficient. On the contrary, it is usually closer to reality to propose that relationships among 
the economic agents and variables are nonlinear. By the 1980s, physics had offered new 
suggestions for a more realistic understanding and modelling of economic phenomena. The 
spread of non-equilibrium thermodynamic ideas and the increasing interest of all scientific 
fields in nonlinear dynamic models with the discovery that simple nonlinear models can 
show complex dynamics pushed economists to study nonlinear dynamics and chaos theory 
as a possible framework for modelling economic phenomena. 
Economists began to look at chaotic analyses of the late 1970s and the 1980s, including such 
important works as those by Medio (1979), Stutzer (1980), Benhabib and Day (1981), Day 
(1982), and Grandmont (1985), just to name few. A common feature of chaos models is that 
nonlinear dynamics tend to arise as the result of relaxing the assumptions underlying the 
competitive market general equilibrium approach. 
The relevance of addressing chaos in economic models is associated with detecting the 
presence of chaotic motion in economic data. To show that a mathematical model exhibits 
chaotic behaviour does not prove that chaos is also present in the corresponding 
experimental data. To convincingly show that a system behaves chaotically, chaos has to be 
identified directly from the data.  
From an empirical point of view, it is difficult to distinguish between fluctuations provoked 
by random shocks and endogenous fluctuations determined by the nonlinear nature of the 
relation between economic aggregates. For this purpose, chaos tests test are developed to 
investigate the basic features chaotic phenomena: nonlinearity, fractal attractor, and 
sensitivity to initial conditions. 
                                                                                                                                                             
initially, their phase space paths may diverge arbitrarily far. […] Between two points whose path ends later in 
say, area A there will be a point whose paths ends in B ...and vice versa. This phenomenon will occur no matter 
how close the chosen points are”, cit. in Stone, 1989, p. 128. 
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2.1 Correlation Dimension 
A necessary but not sufficient condition in order to define a system as being chaotic is that 
the strange attractor has a fractal dimension. 
The notion of dimension refers to the degree of complexity of a system expressed by the 
minimum number of variables that is needed to replicate the system (Schwartz and Yousefi, 
2003). For example, a cube has three dimensions, a square has two dimensions, and a line 
has one. The topological dimension is always an integer. A chaotic system has non-integer 
dimensionality called fractal dimension. The fractal dimension measures the probability that 
two points chosen at random will be within a certain distance of each other and examines 
how this probability changes as the distance is increased.  
In the literature, there are many methods3 for calculating the fractal dimension (Hausdorff 
dimension, the box-counting dimension, the information dimension, and the correlation 
dimension), which nevertheless do not provide equivalent measures (Hentschel - Procaccia, 
1983). Among these different algorithms, the correlation dimension proposed by 
Grassberger-Procaccia (1983), based on phase space reconstructions of the process to 
estimates4, has the advantage of being straightforward and quickly implemented. 
Let us consider the mono-dimensional series { }nttx 1=  and, from this, the sequence of 

1+−= mnN  m-dimensional vectors, ),...,,( 11 +−−= mtttt xxxX  that gives us the 

reconstructed series { }n mttx =
. 

If the unknown system that generated { }nttx 1=  is n-dimensional, and provided that embedding 
dimension5 is 12 +≥ nm 6, we have that the set of m-histories recreates the dynamics of the 
data-generating system and can be used to analyse its dynamics (Pachard et al., 1980, 
Takens, 1981). 
Let us suppose that ),,( εmNC  is the number of points separated by a distance less than ε ; 
for a given embedding dimension, the correlation function7 is given by 

0)(
)1(

1),,( >−−
−

= ∑
≤≠≤

εεε
Nstm

st XXH
NN

mNC     (6) 

                                                        
3
 See Farmer et al., 1983, Cutler, 1991, Barnsley, 1988, and Falconer, 1990. 

4
 This procedure is based upon the method of delay time coordinates, by Takens (1981) that showed that this type 

of reconstruction yields a topological equivalent attractor leaving the dynamic parameters invariant. 
5
 Basic elements to reconstruct the time series from the original one are the delay-time and the embedding 

dimension. In the literature there are some techniques like the False Nearest Neighbor and the Mutual 
Information Function in order to choose respectively the embedding dimension and the delay-time. 
6
 According to the numerical results provided by Packard et al.,(1980) it is possible to get reasonable results with 

much smaller embedding dimensions. This point is particularly interesting in different economic applications 
since in such cases the dimension of the true phase space is often not known a priori. Over the years this insight 
has widely been adopted in economic literature on chaos where common practice is to choose m around 10–12. 
(Schwartz and Yousefi 2003). 
7
 Example by Barnett and He, 2000. 
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)(zH  is the Heaviside function given by 01)( ≥= zallforzH  and 0; otherwise,ε  is the 

sufficiently small distance between vectors tX and sX , and . is the norm operator. 
The correlation function ),,( εmNC gives the probability that a randomly selected pair of 
delay coordinate points is separated by a distance less thanε . It measures the frequency with 
which temporal patterns are repeated in the data. 
To determine the correlation dimension from (6), we have to determine how ),,( εmNC  
changes as ε  changes. As ε  grows, the value of ),,( εmNC  grows because the number of 
near points to be included in (6) increases. Grassberger and Procaccia (1983) show that for 
sufficiently small ε , ),,( εmNC  grows at rate CD and can be well approximated by 

CDmNC εε ≈),,(        (7) 
That is, the correlation function is proportional to the same power of CD  that represents the 
value of the correlation dimension.  
More formally, the dimension associated with the reconstructed dynamic is given by 

ε
ε

ε log
),,(loglim 0

mNCDC →=
  (8) 

That is, it is given by the slope of the regression of log ),,( εmNC  versus logε  for small 
values of ε and depends on the chosen embedding dimension.  
If, as m  increases CD  continues to rise, then this relationship is symptomatic of a stochastic 

system. If the data are generated by a chaotic system, CD  will reach a finite limit at some 
relatively small m  (saturation point). The importance of the correlation dimension arises 
from the fact that the minimum number of variables required to model a chaotic attractor is 
the smallest integer greater than the correlation dimension itself. 
The reliability of implementing this algorithm suffers from some problems. Because it is 
based on the method of delay time coordinates introduced by Takens (1981), the estimates of 
the embedding dimension and delay time are so crucial that an unfortunate delay time choice 
yields misleading results concerning the dimension of well-known attractors.  
Other than the problems associated with these estimates, the correlation dimension suffers 
from two other problems related to the choice of sufficiently small ε and the norm operator. 
With the limited length of the data, it will almost always be possible to select sufficiently 
small ε so that any two points will not lie within ε of each other (Ramsey and Yuan, 1989).  
Regarding the norm operator, while Brock’s (1986) theorem gives the conditions under 
which the correlation function remains independent of the choice of norm, Kugiumtzis 
(1997) shows the invalid application of this theorem for short noisy time series, such as 
economic and financial series. Therefore, under such circumstances, the most reliable results 
are obtained by using the Euclidian norm (Schwartz and Yousefi, 2003). The presence of 
noise in time series not obtained from experiments could further compromise the distinction 
between stochastic and deterministic behaviour. Therefore, a data-filtering procedure (linear 
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and nonlinear) is required to reduce the unwelcome noise level without distorting the original 
signal8 to obtain reliable results. 
Reliability could also be compromised by using short data sets (Ramsey and Yuan 1989, 
1990). In fact, in the case of high-dimensional chaos, it will be very difficult to make 
estimates without an enormous amount of data. This suggests that the correlation dimension 
can only distinguish low-dimensional chaos from high-dimensional stochastic processes, 
particularly with economic data. Furthermore, if the fractal dimension is found, the 
correlation dimension, as in all nonparametric methods, does not provide information about 
the dynamics of the process that generated it because it does not preserve time-ordering data 
(Gilmore 1993a, b). 

2.2 BDS Test 
The BDS test9 introduced by Brock, Dechert and Scheinkman (1987, 1996) is a non-
parametric method based on the correlation function developed by Grassberger-Procaccia 
(1983), defined in (6), and used to test for serial dependence and nonlinear structures10 in a 
time series. The BDS test incorporates the embedding dimensions, but it assumes the delay 
time equals 111. 
Therefore, the BDS test is not considered to be a direct test for chaos; rather, it is used as a 
model selection tool to obtain some information about what kind of dependency exists after 
removing nonlinear dependency from the data.  
The standardised residuals from an ARCH-type model are extracted and then tested for 
nonlinear dependence. If there is no dependence, the data are not chaotic because the ARCH-
type model has captured all nonlinearities (Hsieh, 1989, 1991); otherwise, the BDS test is 
applied to residuals to check if the best-fit model for a given time series is a linear or 
nonlinear model. 
The BDS tests the null hypothesis that the variable of interest is independently and 
identically distributed (IID). Because IID implies randomness, if a series is proved to be IID, 
it is random (Barnett et al., 1997).  
Under the null hypothesis of whiteness, the BDS statistic is obtained by12 

),,(ˆ
),1,(),,(),,(

εσ
εε

ε
mN
NCmNCNmNW

m−
=     (9) 

                                                        
8
 Caputo et al. forthcoming in Chaos Solitons and Fractals 

9
 Subsequent to its introduction, the BBS test was generalised by Savit and Green (1991) and Wu, Savit, and 

Brock (1993) and more recently, DeLima (1998) introduced an iterative version of the BBS test. 
10

“There are three particularly well known tests currently in use for testing for nonlinearity: BDS test, White’s 
neural network test and the Hinich bispectrum tes, Barnett et al., 1997, p. 8. 
11

 See Barnett et al. (1997) and Matilla-Garcia et al. (2004) for the problems when fixing delay time to one. 
Moreover we have to consider The BDS-G test suggested by Matilla-Garcià et al. (2004) as a new way for 
selecting an adequate delay time which allows to obtain a good approximation of the correlation dimension. 
12

 Example by Barnett and He, 2000 
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The correlation function asymptotically follows standard normal distribution )1,0(N : 

),,(lim εmNWN ∞→ ~ ε,),1,0( mN ∀ . ),,(ˆ εσ mN 13 is the standard sample deviation of 
mNCmNC ),1,(),,( εε − . 

Moving from the hypothesis that a time series is IID, the BDS tests the null hypothesis that 
mNCmNC ),1,(),,( εε = , which is equivalent to the null hypothesis of whiteness against an 

unspecified alternative.  
Hsieh (1991) shows that the BDS test can detect the presence of four types of non-IID 
behaviours resulting from a non-stationarity of the series, a linear stochastic system (such as 
ARMA processes), a nonlinear stochastic system (such as ARCH/GARCH processes), or a 
nonlinear deterministic system, which could feature low-order chaos14. If series are IID. in 
which linear or even conditional heteroskedasticity can describe the relations between data, 
chaotic tests will not be required. However, if this is not the case, investigating the main 
properties of chaoticity should not be disregarded.  
Moreover, because it is based on the correlation dimension, the BDS test suffers from the 
same limitations. In particular, its performance depends on the size of data sets (N) and ε15, 
even though Brock et al. (1991) showed how the statistics of this test are correctly 
approximated in finite samples if 
- the number of data N is greater than 500. 
- ε lies between 0.5 θ and 2 θ, where θ is the standard deviation of the series. 
- the embedding dimension m is lower than N/200. 
Moreover, it has been found that the BDS test has low power against certain forms of 
nonlinearity, such as self-exciting threshold AR processes and neglected asymmetry in 
volatility (Kuan 2008). 

2.3 Lyapunov Exponents  
The time series analysis tools described above—the BDS test and the correlation 
dimension— allow for the distinction between nonlinear systems with a certain degree of 
complexity and those without, relying on specific features of these systems: nonlinearity for 
the BDS test and fractal dimension for the correlation dimension. Therefore, considering the 
fact that the BDS test produces indirect evidence of nonlinear dependence, which is 
necessary but not sufficient for chaos (Barnett et al. 1995, 1997, Barnett and Hinich, 1992), 
and even though a nonlinear dynamic is low-dimensional, it cannot be considered chaotic; 
thus, we need a more appropriate tool to detect chaotic behaviour. The Lyapunov exponent 
may provide a more useful characterisation of chaotic systems because unlike the correlation 
dimension, which estimates the complexity of a nonlinear system, it indicates a system’s 
level of chaos. 
                                                        
13

 See Brock et al., 1996. 
14

 See Filoll, 2001. 
15

 To deepen this point see Kyrtsou et al. (2001) 
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The Lyapunov exponent (L) investigates another different, and perhaps more specific, 
characteristic of chaotic systems: their sensitivity to initial conditions. Two points with 
arbitrarily close but unequal initial conditions will diverge at exponential rates. The 
trajectories remain within a bounded set if the dynamic system is chaotic.  
In calculating the divergence of the trajectories, we are interested in identifying what is 
known as the greatest exponent or Lyapunov characteristic exponent16. This exponent 
measures average exponential divergence or convergence between trajectories that differ 
only in having an ‘‘infinitesimally small’’ difference in their initial conditions and remains 
well defined for noisy systems. 
To estimate λ from experimental or observational data, there are two classes of methods, 
both of which are based on reconstructing the space state by the delay coordinates methods. 
The direct methods17 proposed by Wolf et al. (1985) and Rosenestein et al. (1993) are based 
on the calculation of the growth rate of the difference between two trajectories with an 
infinitesimal difference in their initial conditions. 
In Jacobian methods18, data are used to estimate the Jacobians of underlying processes, and λ 
is calculated from these. Nychka et al. (1992) proposed a regression method similar in some 
respects to the Gencay and Dechert test (1992), which involves the use of neural networks to 
estimate the Jacobians and λ; it is known as the NEGM test. Some remarkable advantages of 
the Jacobian methods over the direct methods are their robustness to the presence of noise 
and their satisfactory performance in moderate sample sizes (Shintani and Linton, 2004). 
The general idea on which those methods are based is to follow two nearby points and 
calculate their average logarithmic rate of separation. 
Consider 0x  and '

0x  as two points in the state space with distance 1
0

'
00 <<=− xxx δ . 

Here, xtδ  is the distance after T iterations between two trajectories emerging from these 
points; thus, 

T
xxt eλδδ
0

≈  
where T is the iteration number and λ  is the maximal Lyapunov exponent, which measures 
the average rate of divergence or convergence of two nearby trajectories. This process of 
averaging is the key to calculating accurate values of λ using small, noisy data sets. 
In a system with attracting fixed points of periodic orbit, the distance ),( 0 txxδ diminishes 
asymptotically with time. If the system is unstable, the trajectories diverge exponentially for 
a while but eventually settle down. If the system is chaotic, ),( 0 txxδ behaves erratically. 
                                                        
16

“[…] maximal Lyapunov exponent […] is the inverse of a time scale and quantifies the exponential rate by 
which two typical nearby trajectories diverge in time. In many situations the computation of this exponent only is 
completely justified, […]. However, when a dynamical system is defined as a mathematical object in a given state 
space, […] there exist many different Lyapunov exponent as there are space dimensions”, Kantz e Schreiber, 
1997, p. 174. 
17

 Some limitations of this methods are highlighted in Shintani and Linton, 2004 
18

 To obtain the Lyapunov exponent from observational data, Eckmann and Ruelle (1985) and Eckmann et al. 
(1987) proposed a method, known as the Jacobian method, which is based on nonparametric regression. 
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Hence, it is better to study the mean exponential rate of divergence of trajectories from two 
initially close points using the following algorithm: 

∑
=

∞→=
T

t
T x

txx
T 1 0

0 ),(
ln1lim

δ

δ
λ       (11) 

The exponents can be positive or negative, but at least one exponent must be positive for an 
attractor to be classified as chaotic. In particular, if 0<λ , the system converges to a stable 
fixed point or stable periodic orbits. A negative value of the Lyapunov exponent is 
characteristic of dissipative or non-conservative systems. If 0=λ , the system is 
conservative and converges to a stable cycle limit. If 0>λ , the system is unstable and 
chaotic. Nearby points, no matter how close, will diverge. Therefore, if the system is chaotic, 
it will at least have a positive Lypunov exponent19. In fact, one definition of chaotic systems 
is based on a positive Lyapunov exponent (Mayer-Kress, 1986, Deneckere and Pelikan, 
1986, Wolf et al. 1985). Finally, if ∞=λ , the system is random. 

2.4 Topological methods 
The tools described thus far, which are based on detecting the metric and dynamical 
invariants of attractors, are highly sensitive to noise (Barnett and Serletis 2000). In 
particular, their applications often require large, clean data sets. Now, if we consider the data 
sets provided in economics, which are small and noisy, the possibility of detecting chaotic 
behaviours is very limited. To overcome these limits, the attention of researchers is 
redirected towards the topological tools that provide the basis for a new way of testing data 
for chaotic behaviour (Mindlin et1990, Mindlin and Gilmore 1992, Tufillaro et al. 1990). 
Topological tools are characterised by the study of the organisation of the strange attractor20 
and exploit an essential property of chaotic systems, i.e., the tendency of a time series to 
nearly, although never exactly, repeat itself over time. This property is known as the 
recurrence property. Topological methods feature close returns plots (McKenzie, 2001, 
Gilmore, 1993a,b, 1996, 2001) and recurrence analysis (Eckmann et al. 1987). This latter is 
based on embedded delayed coordinates, while the former is implemented without 
embeddings. 
These techniques make it possible to reveal correlations in data sets that are not possible to 
detect in the original time series. They do not require assumptions on the stationarity of a 
time series or the underlying motion equations and have been successfully applied in the 
sciences to detect chaos in experimental data. Moreover, they are particularly applicable to 
economic and financial data because they work well on relatively small data sets (Faggini, 
2007, 2011) and are robust against noise. They preserve the time ordering of data and 
provide information about the system that generated them. 
                                                        
19

“[…] the magnitude of the exponent reflecting the time scale on which system dynamics become 
unpredictable”, Wolf et al., 1985, p. 285. 
20

 A strange attractor is the set of points towards which chaotic system converges 
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Of course, this does not mean that these tools are without problems. First, the threshold term 
ε , which compares the data, is subjective. This is true even if, unlike the BDS test, this term 
can be varied without altering the qualitative nature of the observed pattern of close returns 
(McKenzie, 2001). Second, both metric and topological tests suffer with non-stationary 
data21. However, the problem of non-stationarity, while a problem for both metric and 
topological tests, seems to be more stringent for the former because it does not maintain the 
time ordering of data. Moreover, for recurrence analysis, we must take into account all 
limitations concerning the procedure of embedding coordinates. 

2.5 Close returns test and recurrence analysis 
The close returns test consists of a two parts: a qualitative component that is a graphical 
representation of the presence of chaotic behaviours, the Close Return Plot (CRP), and a 
quantitative one that tests the null hypothesis that the data are IID against both linear and 
nonlinear alternatives. It exhibits the same performance as the BDS test. Unlike the methods 
based on the correlation dimension, this tool detects the recursive behaviour of chaotic time 
series. 
Let { }tx  be a time series whose trajectories are orbiting in the face space. If the orbit is one 

period, the trajectory will return to the neighborhood of tx  after an interval equals 1; if the 
orbit is two periods, it will return after an interval equals 2, and so on. 
Therefore, if tx  evolves near a periodic orbit for a sufficiently long time, it will return to the 

neighbourhood of tx  after some interval (T). The criterion of closeness requires that the 

difference Tii xx +−  be very small. Computing all differences itt xx +− , where )...1( nt =
, )1...1( −= ni  and n  is the length of sample, the close return test detects the observations 

for which Tii xx +−  is smaller than a threshold value ε . In the plot22 (Fig. 5), the horizontal 
axis indicates the number of observations t, where t=(1,2,…, N), and the vertical axis is i, 
where i=(1,2,…N-1,). N is the observation number. If this difference is smaller, it is coded 
black; otherwise, it is coded white. 
If the data are IID, the distribution of black dots will be random. In the plot, no pattern is 
evident (Fig. 5). If the time series is deterministic, it is possible to observe horizontal line 
segments. More specifically, the short horizontal line is symptomatic of chaotic dynamics 
(Fig. 6). 
                                                        
21

 “This is especially a concern when testing data for emerging countries, which typically undergo significant 
regulatory changes in the development period”, McKenzie, 2001, p. 40. 
22

 Examples by Gilmore 1993a,b, 1996, 2001 
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Fig. 5 Close returns plot of random data 

 
Fig. 6 Close returns plot series from logistic map 

The second part of the test concerns the construction of a histogram that resumes the 
information of the close returns plot.  
The histogram displays the number of close returns for each i , where 

∑ +−−Θ= itti xxH ε(  and Θ  is the Heaviside function. In the histogram, the chaotic 
data will show some peaks (Fig. 7a); otherwise, it will be uniformly distributed around some 
value H  (Fig. 7b). 
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 (a) (b) 
Fig. 7 Histogram of Henon series (a) and random series (b) 

To define if on average HHi =  and to determine whether the null hypothesis of IID can be 
accepted, we have to calculate the chi-squared statistic: 
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In Equation 12, npH =  and i is equal to the number of observations over p, which is 
estimated in the following way: 

plottheofareatotal
returnscloseofnumbertotalp =  

Then the estimated 2
tχ  is compared to the critical test value )( 2

cχ  obtained with )1( −k  

degrees freedom. If 22
tc χχ > , the null hypothesis that the data are IID is rejected (Gilmore 

1993, 2001, MacKenzie 2001). 

2.6 Recurrence Analysis 
Like the close returns test, recurrence analysis consists of two parts: the recurrence plot (RP) 
developed by Eckmann et al. (1987), a graphical tool that evaluates the temporal and phase 
space distance, and recurrence quantification analysis (RQA)23, a statistical quantification of 
RP. 
Recurrence analysis and the close returns plot are more similar because they are based on the 
same methodology but differ in the plot construction. Recurrence plots are symmetrical over 
the main diagonal. Moreover, while the close returns test analyses the time series directly 
and fixes a value ε  to estimate nearby points, the RP is based on the reconstruction of time 
series and an estimation of the points that are close. This closeness is measured by a critical 
radius so that a point is plotted as a coloured pixel only if the corresponding distance is 
below or equal to this radius. From the occurrence of lines parallel to the diagonal in the 
                                                        
23

 Zbilut J. P., Webber C. L., (1992). 
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recurrence plot, it can be seen how fast neighboured trajectories diverge in phase space. The 
line segments parallel to main diagonal are points that move successively closer to each 
other in time and would not occur in a random as opposed to deterministic process. Chaotic 
behaviour produces very short diagonals, whereas deterministic behaviour produces longer 
diagonals. Thus, if the analysed time series is chaotic, then the recurrence plot shows short 
segments parallel to the main diagonal; on the other hand, if the series is white noise, then 
the recurrence plot does not show any kind of structure. 
Nevertheless, sometimes the graphical output of RP is not easy to interpret because the 
signature of determinism, the set of lines parallel to the main diagonal, might not be so clear. 
As a consequence, Zbilut et al. (1998, 2000) proposed a statistical quantification of RP, 
which is well known as recurrence quantification analysis (RQA). 
RQA defines the measures of the diagonal segments in a recurrence plot. These measures are 
recurrence rate, determinism, averaged length of diagonal structures, entropy and trend. 
Recurrence rate (REC) is the ratio of all recurrent states (recurrence points percentage) to all 
possible states and is the probability of recurrence of a special state. REC is simply what is 
used to compute the correlation dimension of data. A recurrence plot can be considered to be 
a two-dimensional pictorial representation of the points that contribute to Eq. (6) for a 
particular value of ε. 
Determinism (DET) is the ratio of recurrence points forming diagonal structures to all 
recurrence points. DET24 measures the percentage of recurrent points forming line segments 
that are parallel to the main diagonal. A line segment is a point’s sequence, which is equal to 
or longer than a predetermined threshold. These line segments reveal the existence of 
deterministic structures, absence instead of randomness. 
Maxline (MAXLINE) represents the averaged length of diagonal structures and indicates the 
longest line segments that are parallel to the main diagonal. It is claimed to be proportional 
to the inverse of the largest positive Lyapunov exponent. A periodic signal produces long 
line segments, while the noise does not produce any segments. Short segments indicate 
chaos. 
Entropy (ENT) (Shannon entropy) measures the distribution of those line segments that are 
parallel to the main diagonal and reflects the complexity of the deterministic structure in the 
system. This ratio indicates the time series structuredness so high values of ENT are typical 
of periodic behaviours, while low values are typical of chaotic behaviours. A high ENT 
value indicates a large diversity in diagonal line lengths; low values indicate small diversity 
in diagonal line lengths25. “[...] short line max values therefore are indicative of chaotic 
behaviours”26. The value trend (TREND) measures the paling of the patterns of RPs away 
from the main diagonal (used for detecting drift and non-stationarity in a time series). 
                                                        
24

 “This is a crucial point: a recurrence can, in principle, be observed by chance whenever the system explores 
two nearby points of its state space. On the contrary, the observation of recurrent points consecutive in time (and 
then forming lines parallel to the main diagonal) is an important signature of deterministic structuring” Manetti et 
al. (1999)

 

25
 Trulla et al. 1996 

26
 Iwanski and Bradley (1998), Atay and Altintas (1999) 
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An extensive survey of different software used to apply these techniques is provided in 
Belaire-Franch and Contreras (2002). 

3. Evidence of Chaos in Economic Data 
In this section, we will summarise the main results obtained by applying chaos tests to 
economic and financial data. We will distinguish between the applications to 
macroeconomic data and financial data because of the variation in the results between the 
two. 
Of course, this survey is not meant to be exhaustive but only indicative of the state of the art. 
In applying the BDS test to the residuals of linear models, Sayers (1986) and Frank and 
Stengos (1987) rejected the presence of chaos in the data of work stoppages and Canadian 
macroeconomic series, respectively. Brock and Sayers (1988) conducted their analysis using 
U.S. macroeconomic data27 and showed the presence of nonlinearity but presented weak 
evidence of chaos. Barnett and Chen (1988) demonstrated the presence of chaos in the U.S. 
Divisia monetary aggregates. The estimated value of the correlation dimension reaches a 
saturation point between 1.3 and 1.5, indicating the presence of a chaotic attractor in a bi-
dimensional face space. In Frank et al. (1988), the application of the correlation dimension to 
residuals of the AR model and Lyapunov exponent did not show the presence of chaos in 
macroeconomic data from 1960 to 1988 for West Germany, Italy, Japan and England. 
DeCoster and Mitchell (1991), in applying the correlation dimension and the BDS test to 
weekly monetary variables (Divisia M2 and M3), showed that nonlinear and even chaotic 
monetary dynamics for U.S. data cannot be dismissed. The same procedure and conclusions 
were reported by Frank and Stengos (1989). They investigated daily prices from the mid-
1970s to the mid-1980s for gold and silver using the correlation dimension and Kolmogorov 
entropy. They found that the correlation dimension is between 6 and 7 and that the 
Kolmogorov entropy is about 0.2 for both assets. 
Different conclusions were reported by Yang and Brorsen (1992). They did not find chaos in 
the daily prices of some agricultural commodities or in several futures markets, including 
those of gold and silver. The evidence of nonlinearity is not consistent with chaos because 
the shuffled data do not satisfy the saturation condition of correlation dimension. Cromwell 
and Labys (1993) apply the correlation dimension and the Lypunov exponent to commodity 
prices for the period from 1960 to 1992. They find chaos in daily prices of corn but not in 
those of sugar, coffee and cacao.  
In Chavas and Holt (1991), the application of the correlation dimension, the BDS test, and 
the Lyapunov exponent provided clear evidence that the dynamic process generating the 
pork cycle is nonlinear, even if the evidence in favour of chaos is less conclusive. These 
results are confirmed by Streips (1995), who by applying the same tests on observations of 
the monthly U.S. hogcorn price ratio for the period 1910-94, shows that data are chaotic.  
Kohzadi and Boyd (1995) tested for the presence of chaos and nonlinear dynamics in 
monthly cattle prices for the period 1922–90. The Grassberger and Procaccia, BDS and 
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 Employment 1950-I to 1983-IV, unemployment 1949-I to 1982-IV, monthly post-war industrial production, 
and pig iron production 1877-1937. 



16 
 

Hurst Exponent tests showed evidence of chaos in these data. Bajo-Rubio et al. (1992) 
presented estimates of the correlation dimension and the largest Lyapunov exponent for daily 
data regarding the Swedish Krona vs. the Deutsche Mark, ECU, U.S. Dollar and Yen 
exchange rates. They find indications of deterministic chaos in all exchange rate series. 
However, because of the limited number of data (1985-1991), the estimates for the largest 
Lyapunov exponents are not reliable, except in the Swedish Krona-ECU case where they 
find a low-order chaotic behaviour. 
The close returns test has been implemented in detecting and visualising chaotic behaviour in 
macroeconomic time series using some monetary aggregates. Montoro and Paz (1997) did 
not find evidence of chaos in the Divisia M2 series, in contrast with the results obtained in 
several previous works.  
Monthly aggregate air transport service series for over two decades have been analysed using 
BDS test by Adrangi et al. (2001a). While strong evidence of nonlinearity is found in the 
data, this evidence is not consistent with chaos. The ARCH-type model explains the 
nonlinearity in the data well. 
The daily oil products for the Rotterdam and Mediterranean petroleum markets have been 
tested for the presence of chaos and nonlinear dynamics by Panas and Ninni (2000). The 
correlation dimension, BDS test and Lyapunov exponents show strong evidence of chaos in 
a number of oil products: Naphtha, Mogas Prem, Sulfur FO 3.5% e FO 1.0%, Gasoil e 
Mogas REG.UNL. Moreover, Panas (2002) investigated the price behaviour in the London 
Metal Exchange market using the two most attractive nonlinear models: long memory and 
chaos. The results indicate that the dynamics of the LME market can be attributed to long 
memory (aluminium and copper), i.e., a persistent process exhibiting self-similarity, short-
memory behaviour (nickel and lead price returns), antipersistent (or intermediate memory in 
the case of zinc returns) and a deterministic chaotic process (in the case of tin returns). 
Serletis and Shintani (2006) find statistically significant evidence against low-dimensional 
chaos in Canadian and US data. 
Barkoulas (2008) applied both metric and topological methodologies to test for deterministic 
chaotic structure in simple-sum and Divisia monetary aggregates. The results did not satisfy 
any of the three indications of chaos. The monetary dynamics are not chaotic. Faggini (2007, 
2011), starting from the conclusion by Frank et al. (1988) that refused the chaotic hypothesis 
in macroeconomic data, applied visual recurrence analysis to the same time series and found 
chaos in GNP data from Japan and United Kingdom. 

4. Evidence of Chaos in Financial data 
The apparent randomness of financial markets led some economists to become interested in 
chaos theory as a theoretical framework able to explain those fluctuations. One of the first 
applications of chaos tests to financial data was carried out by Scheinkman and LeBaron 
(1989). They analysed the United States weekly returns on the Center for Research in 
Security Prices (CRSP), applying the BDS test on residuals of linear models. They found 
rather strong evidence of nonlinearity and some evidence of chaos. This is because the 
correlation dimension of the shuffled residuals appeared to be much greater than that of the 
original residuals. That is, it does not reach a saturation point, indicating the completely 
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random behaviour of the shuffled data. If time series data are chaotic, the estimated 
correlation dimension of residuals is the same as that of the original data. When the data are 
stochastic, the correlation dimension of the residuals increases as the embedding dimension 
increases. The residuals are less structured than the original data. 
The same conclusion was reached by Hsieh (1991), who uses the BDS test to detect chaos in 
weekly stock returns data from the Center for Research in Securities Prices from 1963 to 
1987. All of the data were first filtered by an autoregression model. The correlation 
dimension technique was used by DeCoster et al. (1992) to find evidence of chaos in daily 
sugar, silver, copper, and coffee futures prices for the period 1960-1989. 
Vaidyanathan and Krehbiel (1992) and Mayfield and Mizrach (1992) found evidence of 
chaos behaviour in the S&P 500 index, though this conclusion is based on the results of 
correlation dimension rather than on Lyapunov exponent estimates.  
In Blank (1991), the estimates of correlation dimensions and Lyapunov exponents on 
soybean and S&P 500 futures prices are consistent with the presence of deterministic chaos. 
Yang and Brorsen (1993) found evidence of nonlinearity in several futures markets, which is 
consistent with deterministic chaos in about half of the cases. Hsieh (1993) found evidence 
of nonlinearity in four currency futures contracts, but found that nonlinearity is the result of 
predictable conditional variances. In Brorsen and Yang (1994), nonlinear dependence is not 
removed for the value-weighted index or the S&P 500 stock index. Standardised residuals 
from the GARCH model are not IID for two of three returns series. The application of BDS 
test proves that deterministic chaos cannot be dismissed. 
Abhyankar et al. (1995) test for the presence of nonlinear dependence and chaos in real-time 
returns on the U.K. FTSE-100 Index (about 60.000 data points). Their results suggest that 
GARCH can explain some but not all of the observed nonlinear dependence. The application 
of Hinich test (1982), BDS test, and Lypunov estimates fail to detect chaos in the data.  
Sewell et al. (1996) examined weekly changes for the period 1980 to 1994 in six major stock 
indices (the US, Korea, Taiwan, Japan, Singapore and Hong Kong) and the World Index as 
well as the corresponding foreign exchange rates between the US and the other five 
countries. They concluded that ‘[t]hese results do not prove the existence of chaos in these 
markets but are consistent with its existence in some cases’. Abhyankar et al. (1997) and 
Serletis and Shintani (2003) reject the null hypothesis of low-dimensional chaos in the S&P 
500 and Dow Jones Industrial Average. 
Serletis and Gogas (1997) tested for chaos in seven East European black market exchange 
rates by applying the BDS test, the NEGM test (Nychka et al., 1992), and the Lyapunov 
exponent. They found evidence consistent with a chaotic nonlinear generation process in two 
out of the seven series: the Russian ruble and East German mark. In particular, the BDS test 
rejects the null hypothesis of IID for three of the seven markets, whereas the Lyapunov 
exponent estimator proposed by Nychka et al. (1992) supports the hypothesis of chaotic 
dynamics in two markets. Barkoulas and Travlos (1998) investigated the existence of a 
deterministic nonlinear structure in the stock returns of the Athens Stock Exchange (an 
emerging capital market) and found no strong evidence of chaos. 
Gao and Wang (1999) examined the daily prices of four futures contracts (S&P 500, JPY, 
DEM and Eurodollar) and found no evidence of deterministic chaos. Andreou et al. (2000) 
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examined four major currencies against GRD and found evidence of chaos in two out of four 
cases. 
Adrangi et al. (2001b), implementing the BDS test, correlation dimension and Kolmogrov 
entropy, investigated the presence of low dimensional chaos in crude oil, heating oil and 
unleaded gasoline future price from the early 1980s. They find strong evidence of 
nonlinearity inconsistent with chaos. 
Gilmore (2001) implemented the close returns test to examine chaos presence in some 
foreign exchange rates. The results did not support chaotic explanations without excluding 
other possible forms of nonlinear structure (Gilmore, 1993a and 1993b). The test was 
implemented on the residuals of some ARCH-type filters as well, and the results have 
indicated that the models have captured some, although not all, of the nonlinear dependence 
among data. Additionally, McKenzie (2001) investigated the presence of chaos in a wide 
range of major national stock market indices using the close return test. The results indicate 
that the data are not chaotic, although considerable nonlinearities are present. 
Daily data for the Swedish Krona against the Deutsche Mark, the ECU, the US Dollar and 
the Yen exchange rates are tested by Bask (2002) using the Lypunov exponent. In most 
cases, the null hypothesis that the Lyapunov exponent is zero is rejected in favour of a 
positive exponent. 
Shintant and Linton (2004) use 18.490 daily observations of the Dow Jones Industrial 
Average from January 1928 to October 2000. They used the Lyapunov exponent estimator 
proposed by Nychka et al. (1992). The results did not indicate chaotic behaviours in the data. 
Foreign exchange rates vs. IRR (Iranian Rial) have been investigated by Torkamani et al. 
(2007), who show that the data in this market have complex chaotic behaviour with a large 
degree of freedom. The tests applied are the correlation dimension and the Lyapunov 
exponent. 
Antoniou and Vorlow (2005) investigated the ‘compass rose’ patterns revealed in phase 
portraits (delay plots) of FTSE 100 stock returns and found a strong nonlinear and possibly 
deterministic signature in the data-generating processes 
The nonlinearity and chaoticity of exchange rate time series are investigated by Liu (2009). 
The BDS test and surrogate data method indicated that the exchange rate time series of 
Canadian Dollars to United States Dollar (CD/USD), Japanese Yen to United States Dollar 
(JY/USD) and United States Dollar to British Pound (USD/BP) exhibit nonlinearity, while 
the exchange rate time series of United States Dollar to EURO (USD/EURO) is linear. The 
largest positive Lyapunov exponents have provided evidence for the possibility of 
deterministic chaos in the daily exchange rate time series of CD/USD, JY/USD and 
USD/BP. 
Das and Das (2007) implemented the Lyapunov exponent and surrogate data method to 
investigate the chaoticity of Foreign Exchange Rates of several countries. They found an 
indication of deterministic chaos in all exchange rate series 
Adrangi et al. (2010), employing the daily bilateral exchange rates of the dollar, conducted a 
battery of tests for the presence of low-dimension chaos (correlation dimension tests, BDS 
tests, and tests for entropy). The strong evidence of nonlinear dependence in the data is not 
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consistent with chaos. The nonlinear dependencies in the dollar exchange rate returns series 
arise from the GARCH-model rather than from a chaotic structure. 
More recently, the rate of returns series for six Indian stock market indices are tested for 
chaos (Mishra 2011). The results from the test of independence on filtered residuals suggest 
that the existence of nonlinear dependence, at least to some extent, can be attributed to the 
presence of conditional heteroskedasticity. To account for the remaining nonlinearity in the 
data, the Lyapunov exponent is estimated28. The result is a positive value in two out of six 
cases, indicating that these return series are generated by a chaotic system. 
Analyses on financial data are performed by recurrence analysis in Mizrach B., (1996), 
McKenzie M D., (2001), Holyst J. A., et al. (2000-2001), Strozzi F., et al. (2002). Belaire-
Franch et al. (2001) analyse (RP e RQA) the exchange rates of 16 OECD countries from 
1957 to 1998. After a filtering procedure with the ARMA model, RQA applied on residuals 
shows the presence of chaotic dynamics in the data. 
Daily index prices, consisting of free float-adjusted market capitalisation stock indices of 
developed and emerging markets between January 1995 and December 2009, are analysed 
by Bastos and Caiado (2011) using recurrence analysis. The statistical tests suggested that 
the dynamics of stock prices in emerging markets characterised by higher values of RQA 
measures when compared to their developed counterparts. 

5. Is there chaos in economic and financial data? 
Although the literature on tests for chaos in economic and financial time series is 
voluminous, there are no uncontroversial results to speak of. Clearly, the short review 
presented above suggests that there is ample evidence of the presence of nonlinearities and 
some evidence of deterministic chaos. 
The difficulty of using chaos theory in economics is a direct consequence of some problems 
related to the application of these techniques to economic data. 
First of all, data quantity and data quality are crucial when applying these techniques, and the 
main obstacle in empirical economic analysis is addressing short and noisy data sets. Data 
quantity and data quality in economics constitute a significant obstacle in chaotic-economic 
theory. 
Moreover, testing macroeconomic series is regarded with some suspicion; not only are the 
gathered data insufficient to perform tests, but the macro time series also involve mixed 
effects: it is not only the distinction between noise and nonlinearities that must be 
determined but also the eventual source of nonlinearity; they are usually aggregated and 
derived from a system whose dynamics and measurement probes may be changing over 
time. Granger (2001) shows that the aggregation of independent series hides the nonlinear or 
chaotic signals. Current tests used to detect chaotic structure often fail to find evidence of 
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 It is clearly observable that in 2 out of 7 cases the point estimates of Lyapunov exponents are positive. This 
implies that the returns of Bank Nifty and CNX IT exhibit a chaotic nonlinear generating process, and therefore, 
the nonlinear structure in these return series is possibly deterministic in nature. Further, a negative Lyapunov 
exponent (i.e. in the case of CNX NIFTY, BSE SENSEX, BSE 200 and BSE 100) indicates that the nature of the 
series is consistent with a stochastic process rather than a deterministic low-dimensional chaotic system. 
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chaos in aggregated data, even if those data are generated by a nonlinear deterministic 
process. 
Little or no evidence for chaos has been found in macroeconomic time series. Investigators 
have found substantial evidence for nonlinearity but relatively weak evidence for chaos per 
se. This is due to the small sample sizes and high noise levels for most macroeconomic 
series. In contrast to laboratory experiments, through which a large number of data points 
can be easily obtained, most economic time series consist of monthly, quarterly, or annual 
data, with the exception of some high-frequency financial series. In fact, the analysis of 
financial time series has led to results that are, as a whole, more reliable than those of 
macroeconomic series. This is because financial time series data are available in large 
quantities over many disaggregated time intervals, though this literature is not free of 
controversial results.  
Controversial results also arise from using inappropriate analytical methodologies that are 
more similar to standard statistical protocol. To distinguish between chaotic and non-chaotic 
behaviours, all researchers, before applying chaos tests, filtered the data using either linear or 
nonlinear models (Frank and Stengos 1989, Blank 1991, Cromwell and Labys 1993, Yang 
and Brorsen 1992, 1993), in most cases, using ARCH-type models. When these do not 
capture all of the nonlinearities in the economic and financial data (Hsieh, 
1991,Vaidyanathan and Krebhiel 1992), chaos analysis is conducted on the residuals. This 
procedure has been used by Frank and Stengos (1989), DeCoster et al. (1992) Chavas and 
Holt (1991) and Bask (2002), among others.  
The filtering procedure was supported by Brock (1986), who stated that before testing for a 
possible nonlinear dependency among the observations, we need to remove all linear 
correlations that may cause the null hypothesis to be rejected. He also argued that with an 
infinite amount of noise-free data, possible nonlinear structures should be unaffected by the 
implementation of a linear filtering process. Removing all linear structure is difficult, but a 
good approximation can be achieved by using an autoregressive moving average (ARMA) fit 
to stationary data. With the assumption that the residuals are filtered for linear dependence, it 
is reasonable to assert that any resulting dependence found in the residuals must be 
nonlinear. Then when nonlinearity is found, ARCH-type models are applied to detect the 
source. If unexplained nonlinearity remains, chaos tests are applied. In this assertion by 
Brock (1986), we must highlight the fact that the linear filtering procedure is irrelevant if the 
data are infinite, noise-free, and stationary29, conditions that are not testable for economic 
and financial data. 
More generally, the open question is whether the chaotic properties of a process are invariant 
to linear and nonlinear transformations. It has been proved that linear and nonlinear filters 
can distort potential chaotic structures (Chen 1993, Wei and Leuthold 1998) and may affect 
the dimensionality of the original data (Chen 1993, Panas and Ninni 2000, Panas 2002), 
providing a false indication of chaos. Chen (1993) shows that the correlation dimension is 
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 Stationarity is an important property of data because in the stationary time series the statistical properties do not 
change over time. 
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invariant to filtering by the MA (moving average model) because, in this way, the fractal 
structure of the dynamics is lost.  
Moreover, sometimes the conclusions both for and against chaos are reached by applying 
only one type of chaos test. For example, Kohzadi and Boyd (1995) find chaos by using only 
the BDS test and R/S analysis. 
To produce convincing results, we have to employ all tests for chaos to exploit their different 
potentials and limits. Few published papers have jointly applied the BDS test, the correlation 
dimension test, and the test for a positive Lyapunov exponent. Very few use topological 
tools (Barkoulas, 2008). 
The consequence of this resonates in the words of Granger and Terasvirta (1992): 
“Deterministic (chaotic) models are of little relevance in economics and so we will consider 
only stochastic models”. The question was intensified by Jaditz and Sayers (1993), who 
reviewed a wide variety of data to conclude that there was no evidence for chaos, though 
they did not deny the indication of nonlinear dynamics of some sort. Moreover, controversies 
are also produced by the nature of the tests themselves. There may be very little robustness 
of such tests across variations in sample size, test methods, and data aggregation methods. It 
is widely known that problems related to the quality and lack of sufficient amounts of data, 
the issue of appropriate level of disaggregation, and the proper definition of methods for 
detecting white noise create considerable obstacles to constructing a meaningful and 
coherent statistical theory about the dynamics of economic and financial data. Following the 
studies so far discussed, we have to admit that no natural deterministic explanation exists for 
the observed economic fluctuations that are produced by external shocks or by inherent 
randomness and, consequently, an inherent unpredictability  
Moreover, up until now, we have been interested only in low-complexity chaotic behaviour. 
The failure to detect low-dimensional chaos does not preclude the possibility of there being 
high-dimensional chaos in these variables (Day 1994). It is possible that the underlying 
nonlinear structure of the economy is more complex and that the chaotic dynamics it exhibits 
are of a higher dimensionality. The algorithms presented above were developed to detect 
chaos in experimental data. Because physicists can often generate very large samples of 
high-quality data form laboratory experiments, they find these algorithms to be directly 
applicable to their research. Consequently, further theoretical advances are required to 
develop tests that are able to detect more complex forms of chaotic behaviours. 

6. Conclusions 
Researchers in economics and finance have been interested in testing for nonlinear 
dependence and chaos for almost two decades now. A wide variety of reasons for this 
interest have been suggested, including an attempt to improve the forecasting accuracy of 
linear time series models and to better explain the dynamics of the underlying variables of 
interest using a richer class of models than that permitted by limiting the set to the linear 
case.  
After an exuberant flurry of publications, the search for chaos in economics has been 
gradually becoming less enthusiastic over the last two decades, as no empirical support for 
the presence of chaotic behaviours in economics has been found. The literature described 
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above does not provide a solid support for chaos as a consequence of the high noise level 
that exists in most aggregated economic time series, the relatively small sample sizes of data, 
and the weak robustness of chaos tests for these data. 
To summarise, surely there is no reason to suppose that the economy is linear (George and 
Oxley, 2007), so we should be able to find evidence of nonlinearity in economic data. 
Therefore, if we prove that the data are chaotic, we will be able to prove that there is a 
deterministic system that generates them. This could be a big step forward in clarifying the 
“nature” of the economy.  
Chaotic nonlinear systems can endogenise shocks. Chaotic dynamic models allow for the 
explanation of persistent and irregular fluctuations without stochastic exogenous shocks 
introduced ad hoc. 
Most economic variables, whether micro-level, such as prices and quantities, or macro-level, 
such as consumption, investment and employment, oscillate. t is difficult to find a specific 
pattern in these oscillations at the level of micro and macro variables because they are not 
cyclic (Day, 1994) and not due to external shocks. 
Moreover, if the economy is chaotic, then we can create a complete and closed model for it. 
This development would significantly help forecasting and control efforts in the short run. 
Being able to detect chaos in economic data is the first condition that must be met to apply a 
chaotic control to phenomena that generate the data. In fact, chaos theory offers attractive 
possibilities for control strategies (Faggini 2008, 2009), which seems particularly relevant to 
gaining insights into economic policies. Using sensitivity to initial conditions to move from 
given orbits to other orbits of attractors means choosing different behaviours of systems—
that is, a different trade-off of economic policy. Moreover, the employment of an instrument 
of control in terms of resources to achieve a specific goal of economic policy will be smaller 
compared to the use of traditional techniques of control. 
Thus, even if we agree with Barnett (2006) that “…the economics profession, to date, has 
provided no dependable empirical evidence of whether or not the economy itself produces 
chaos, and I do not expect to see any such results in the near future. The methodological 
obstacles in mathematics, numerical analysis, and statistics are formidable”, we do not have 
the slightest idea of whether or not the economy exhibits chaotic nonlinear dynamics, and 
hence, we are not justified in excluding the possibility. Moreover, part of the controversy and 
the resulting conclusions are due to the misconception that low-dimensional chaos can be 
expected to be present generically in all economic phenomena. We cannot assume 
deterministic chaos for any measured time series. 
The results of chaos tests do not prove the existence of chaos in all economic variables but 
are consistent with its existence; in some cases, this could mean only that some economic 
phenomena are less complex than others and that the economy of a country or simply a 
single market of an economy is chaotic, not that an economy is as a whole is chaotic. Given 
these considerations, studies in this area should grow both in size and importance as a field 
of their own within economics, although the empirical task of extracting evidence of chaotic 
dynamics from economic time series is objectively more difficult than in the natural 
sciences. 
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We have to create techniques that acknowledge that a basic difference exists between 
physics, which is generally an exact science, and economics. To date, the application of 
chaos theory has been only a mechanical transfer that has not taken into account the specific 
features of economic systems. Surely, compared with neoclassical theory models, chaos 
theory in economics allows researchers to interpret phenomena considered non-influential, 
exogenous, and stochastic. 
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